Integration of minimax models and technological growth theory to analyze the interaction between IT companies and clients

Cover Page

Cite item

Abstract

the article proposes a methodology for analyzing the interaction between IT companies and their clients under conditions of uncertainty, integrating minimax models, the theory of technological growth, and quantitative risk assessment through a parametric configuration of threats. The methodology accounts for the dynamics of technological progress (via a production function incorporating capital, labor, and technology factors), the conflicting interests of the parties (maximizing company profit versus minimizing client risks), and quantitative risk assessment with the identification of critical thresholds for both the company and the client (e.g., maximum service price, minimum quality, trust level, and security investments). Monte Carlo simulations were applied to data from an IT company developing DevSecOps solutions, enabling a quantitative evaluation of the impact of initial conditions on final outcomes. The study contributes to advancing game theory and strategic analysis for the IT market, where the balance between technological progress, security, and competition determines corporate success. The practical significance lies in optimizing R&D investments, pricing strategies, risk management through monitoring threat-configuration parameters, and selecting reliable partners. The methodology can be adapted for industries with critical requirements for security and client interaction (e.g., healthcare, logistics) and may incorporate considerations of macroeconomic shocks and stochastic factors.

About the authors

M. D Akhrameev

Russian Presidential Academy of National Economy and Public Administration

Email: akhrameevmd@gmail.com
ORCID iD: 0000-0003-1057-8319

D. V Stefanovsky

State University of Management

Email: dstefanovskiy@gmail.com
ORCID iD: 0000-0002-8261-5951

References

  1. The State of Digital Transformation in 2022. Report. McKinsey & Company. McKinsey & Company, 2022. URL: https://www.mckinsey.com/featured-insights/digital-maturity (дата обращения: 16.03.2025)
  2. Benzaghta M.A., Elwalda A., Mousa M. M., Erkan I., Rahman M. SWOT analysis applications: An integrative literature review // Journal of Global Business Insights. 2021.Vol. 6. № 1. P. 54 – 72.
  3. Fielder A., Panaousis E., Malacaria P., Hankin C., Smeraldi F. Decision support approaches for cyber security investment // Decision Support Systems . 2016. Vol. 86 . P. 13 – 23.
  4. Anderson E., Zachary S. Minimax decision rules for planning under uncertainty: Drawbacks and remedies // European Journal of Operational Research. 2023. Vol. 311. № 2. P. 789 – 800.
  5. Wieser R. Research and development productivity and spillovers: Empirical evidence at the firm level // Journal of Economic Surveys . 2005. Vol. 19. № 4 . P. 587 – 621.
  6. Akayev A.A. Models of innovative endogenous economic growth of AN-type and their justification // MIR (Modernization. Innovations. Development). 2015. Vol. 6. № 2-1 (22). P. 70 – 79.
  7. M?zrak F. Integrating cybersecurity risk management into strategic management: A comprehensive literature review // Research Journal of Business and Management. 2023. Vol. 10. № 3. P. 98 – 108.
  8. Diana E., Sharifi-Malvajerdi S., Vakilian A. Minimax group fairness in strategic classification // 2025 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML). April 2025. P. 753 – 772.
  9. Aryan P., Raja G.L., Mehta U., Chelliah T. R., Muduli U. R. A resilient tri-parametric fractional frequency control for cybersecurity threats amid latency // IEEE Transactions on Industry Applications. 2025. P. 1 – 15.
  10. Li Y., Kaplan Z.T., Nakayama M.K. Monte Carlo methods for economic capital // INFORMS Journal on Computing . 2024. Vol. 36. № 1. P. 266 – 284.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).