Ayakhta gold-quartz deposit (Yenisei Ridge): formation conditions and source of fluids

Capa

Citar

Texto integral

Resumo

Relevance. The need to establish the parameters of ore-bearing fluids of the Ayakhta gold deposit, one of the standard and large objects in the Yenisei Ridge. The data obtained can be used to develop a holistic model of gold mineralization in the region.

Aim. To determine the physicochemical conditions for the formation of quartz vein zones and ore-bearing fluids source.

Methods. We analyzed the ore minerals composition by micro-X-ray spectral analysis, determined the temperatures of phase transitions in fluid inclusions using the microthermometry method, determined the individual fluid inclusions composition by Raman spectroscopy. The fluid bulk composition was analyzed by gas chromatography-mass spectrometry (GC-MS). To establish the source of the fluid, we used isotopes of sulfur (δ34S) sulfides and carbon dioxide (δ13C) in fluid inclusions in quartz.

Results and conclusions. We established that the gold-quartz vein zones formation occurred under medium temperature conditions (121–424°C) with significant pressure fluctuations (0.5–1.5 kbar). The fluid salinity was moderate (up to 25.5 wt %, NaCl-eq.). Using the GC-MS method, we detected from 178 to 286 compounds in the ore-bearing fluid, H2O and CO2 predominate among them. The share of hydrocarbons, their derivatives, S-, N- and halogenated compounds in total accounts for 7.4–22.6 rel. %. We assume that organic compounds were directly involved in the enrichment of quartz veins with gold mineralization. The isotope composition values of sulfur (+6.6…+9.5 ‰) and carbon from fluid inclusions in quartz (–12.5…–21.9 ‰) indicate a metamorphic-crustal source of fluids.

Sobre autores

Marina Petrova

Sobolev Institute of Geology and Мinerаlоgу, Siberian Вrаnсh of the Russian Academy of Sciences

Email: petrovama@igm.nsc.ru

Postgraduate Student, Engineer

Rússia, 3, Academician Koptyug avenue, Novosibirsk, 630090

Nadezhda Gibsher

Sobolev Institute of Geology and Мinerаlоgу, Siberian Вrаnсh of the Russian Academy of Sciences

Email: gibsher@igm.nsc.ru

Cand. Sc., Senior Researcher

Rússia, 3, Academician Koptyug avenue, Novosibirsk, 630090

Elena Shaparenko

Sobolev Institute of Geology and Мinerаlоgу, Siberian Вrаnсh of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: shaparenko@igm.nsc.ru
ORCID ID: 0000-0001-6421-433X

Cand. Sc., Researcher

Rússia, 3, Academician Koptyug avenue, Novosibirsk, 630090

Anatoly Tomilenko

Sobolev Institute of Geology and Мinerаlоgу, Siberian Вrаnсh of the Russian Academy of Sciences

Email: tomilen@igm.nsc.ru

Dr. Sc., Chief Researcher

Rússia, 3, Academician Koptyug avenue, Novosibirsk, 630090

Taras Bulbak

Sobolev Institute of Geology and Мinerаlоgу, Siberian Вrаnсh of the Russian Academy of Sciences

Email: taras@igm.nsc.ru

Cand. Sc., Senior Researcher

Rússia, 3, Academician Koptyug avenue, Novosibirsk, 630090

Anatoly Sazonov

Siberian Federal University

Email: ASazonov@sfu-kras.ru

Dr. Sc., Professor

Rússia, 79, Svobodny avenue, Krasnoyarsk, 660041

Margarita Khomenko

Sobolev Institute of Geology and Мinerаlоgу, Siberian Вrаnсh of the Russian Academy of Sciences

Email: homenko@igm.nsc.ru

Junior Researcher

Rússia, 3, Academician Koptyug avenue, Novosibirsk, 630090

Sergey Silyanov

Siberian Federal University

Email: silyanov-s@mail.ru

Cand. Sc., Associate Professor

Rússia, 79, Svobodny avenue, Krasnoyarsk, 660041

Bibliografia

  1. Brovkov G.N., Li L.V. Geology and metallogeny of the Yenisei Ore Belt. Krasnoyarsk, KNIIGGiMS Publ., 1985. 291 p. (In Russ.)
  2. Polyakov A.V. Assessment of efficiency of development of the group of gold deposits by the example of Razdolinsky ore cluster. State and Problems of Geological Study of Subsoil and Development of Mineral and Raw Material Base of Krasnoyarsk Region. Krasnoyarsk, KNIIGiMS Publ., 2003. pp. 239–241. (In Russ.)
  3. Serdyuk S.S., Komorovsky Y.E., Zverev A.I., Oyaber V.K., Vlasov V.S., Babushkin V.E., Kirillenko V.A., Zemlyansky S. Models of gold deposits in Yenisei Siberia. Krasnoyarsk, Siberian Federal University Publ., 2010. 584 p. (In Russ.).
  4. Goryachev N.A. Gold deposits in the Earth’s history. Geol. Ore Depos., 2019, vol. 61 (6), pp. 495–511. (In Russ.) doi: 10.31857/S0016-77706163-18
  5. Sazonov A.M., Ananyev A.A., Poleva T.V., Khokhlov A.N., Vlasov V.S., Zvyagina E.A., Fedorova A.V., Tishin P.A., Leontiev S.I. Gold ore metallogeny of the Yenisei ridge: Geological-structural position, structural types of ore fields. Tekhnika I Tekhnologii Zh., 2010, vol. 3 (4), pp. 371–395. (In Russ.)
  6. Budyak A.E., Tarasova Yu.I., Goryachev N.A. Blinov A.V., Ignatiev A.V., Velivetskaya T.A., Abramova V.D., Shcherbakov D.Yu. Ore mineralization of the Ozherelye deposit: comparison with objects of the “Sukhoi Log” type. Doklady Earth Siences, 2023, vol. 509, no. 2, pp. 198–207. (In Russ.) doi: 10.31857/S268673972260223X
  7. Safonov Yu.G. Gold and gold-bearing deposits of the world: genesis and metallogenic potential. Geol. Ore Depos., 2003, vol. 45 (4), pp. 265–278. (In Russ.)
  8. Goldfarb R.J., Groves D.I. Orogenic gold: common vs. evolving fluid and metal sources through time. Lithos, 2015, vol. 223, pp. 2–26. doi: 10.1016/j.lithos.2015.07.011
  9. Gaboury D., MacKenzie D., Craw D. Fluid volatile composition associated with orogenic gold mineralization, Otago Schist, New Zealand: implications of H2 and C2H6 for fluid evolution and gold source. Ore Geology Reviews, 2021, vol. 133, 104086. doi: 10.1016/j.oregeorev.2021.104086
  10. Silyanov S.A., Sazonov A.M., Naumov E.A., Lobastov B.M., Zvyagina Y.A., Artemyev D.A., Nekrasova N.A., Pirajno F. Mineral paragenesis, formation stages and trace elements in sulfides of the Olympiada Gold Deposit (Yenisei Ridge, Russia). Ore Geology Reviews, 2022, 104750. doi: 10.1016/j.oregeorev.2022.104750
  11. Li L.V. Gold deposits of the Yenisei Ridge. Geology and minerals of Central Siberia. Krasnoyarsk, KNIIGGiMS Publ., 1997. pp. 184–222. (In Russ.)
  12. Tomilenko A.A. Gibsher, N.A., Dublyansky, Y.V., Dallai L. Geochemical and isotopic properties of fluids from gold-bearing and barren quartz veins of the Sovetskoye gold deposit (Siberia, Russia). Econ. Geol, 2010, vol. 105 (2), pp. 375–394. doi: 10.2113/gsecongeo.105.2.375
  13. Kryazhev S.G. Genetic models and criteria for prediction of gold deposits in carbon-terrigenous complexes. Dr. Diss. Abstract. Moscow, 2017. 52 p. (In Russ.).
  14. Shaparenko E.O. Physico-chemical conditions of the Blagodantnoe and Dobroe Gold deposits formation (Yenisei Ridge). Cand. Diss. Abstract. Novosibirsk, 2022. 22 p. (In Russ.)
  15. Bortnikov N.S., Prokovev V.Y., Razdolina N.V. Origin of the Charmitan gold-quartz deposit (Uzbekistan). Geol. Ore Depos., 1996, vol. 38, pp. 238–256. (In Russ.)
  16. Kryazhev S.G. Isotope-geochemical regime of the formation of the gold ore deposit Muruntau. Moscow, TsNIGRI Publ., 2002. 91 p. (In Russ.)
  17. Safonov Y.G., Prokofev, V.Yu. Model of cosedimentation hydrothermal formation of gold-bearing reefs of the Witwatersrand basin. Geol. Ore Depos., 2006, vol. 48 (6), pp. 475–511. (In Russ.)
  18. Khomenko M.O., Gibsher N.A., Tomilenko A.A., Bulbak T.A., Ryabukha M.A., Semenova D.V. Physicochemical parameters and age of the Vasilkovskoe gold deposit (Northern Kazakhstan). Russ. Geol. Geophys., 2016, vol. 57, pp. 1728–1749. (In Russ.) doi: 10.1016/j.rgg.2016.04.010
  19. Gibsher N.A., Ruabukha M.A., Tomilenko A.A., Sazonov A.M., Khomenko M.O., Bul’bak T.A., Nekrasova N.A. Metal-bearing fluids and the age of the Panimba gold deposits (Yenisei Ridge, Russia). Russ. Geol. Geophys., 2017, vol. 58, pp. 1366–1383. (In Russ.) doi: 10.1016/j.rgg.2017.11.004
  20. Li X.H., Fan H.R., Hu F.F., Hollings P., Yang K.F., Liu X. Linking lithospheric thinning and magmatic evolution of late Jurassic to early cretaceous granitoids in the Jiaobei Terrane, southeastern North China Craton. Lithos, 2019, vol. 325, pp. 280–296. doi: 10.1016/j.lithos.2018.11.022
  21. Kryazhev S.G., Fridovsky V.Y. Fluid regime of orogenic gold deposits formation within the Yana–Kolyma gold-bearing belt. J. Geol. Pac. Ocean, 2023, vol. 42 (6), pp. 118–130. (In Russ.) doi: 10.30911/0207-4028-2023-42-6-118-130
  22. Gibsher N.A., Tomilenko A.A., Sazonov A.V., Bulbak T.A., Ryabukha M.A., Silyanov S.A., Nekrasova N.A., Khomenko M.O., Shaparenko E.O. The Olimpiadinskoe Gold Deposit (Yenisei Ridge): temperature, pressure, composition of ore-forming fluids, δ34S in sulfides, 3He/4He of fluids, Ar–Ar age and duration of formation. Russ. Geol. Geophys., 2019, vol. 60 (9), pp. 1043–1059. (In Russ.) doi: 10.15372/GiG2019073
  23. Hu M., Chou I-M., Wang R., Shang L., Chen C. High solubility of gold in H2S-H2O±NaCl fluids at 100–200 MPa and 600–800 °C: a synthetic fluid inclusion study. Geochimica et Cosmochimica Acta, 2022, vol. 330, pp. 116–130. doi: 10.1016/j.gca.2022.03.006
  24. Shaparenko E., Gibsher N., Khomenko M., Tomilenko A., Sazonov A., Bulbak T., Silyanov S., Petrova M., Ryabukha M. Parameters for the formation of the Dobroe Gold deposit (Yenisei Ridge, Russia): evidence from fluid inclusions and S–C isotopes. Minerals, 2023, vol. 13 (1), p. 11. doi: 10.3390/min13010011
  25. Zhang Z., Zeng Q., Fan H.-R., Bai R., Wu J., Li X., Zhang Y., Huang L. Characterization of deep ore-forming fluid in the Zhaoxian gold deposit within the Jiaodong gold province: insights from quartz vein fluid inclusion, in-situ trace element analysis, and S isotopic composition in pyrite. Front. Earth Sci, 2024, 12:1354261. doi: 10.3389/feart.2024.1354261
  26. Bulbak T.А., Tomilenko А.А., Gibsher N.А., Sazonov А.M., Shaparenko E.O., Ryabukha M.А., Khomenko M.O., Silyanov S.A., Nekrasova N.A. Hydrocarbons in fluid inclusions from native gold, pyrite, and quartz of the Sovetskoe Deposit (Yenisei Ridge, Russia) according to pyrolysis-free gas chromatography-mass spectrometry data. Russ. Geol. Geophys., 2020, vol. 61 (11), pp. 1260–1282. (In Russ.) doi: 10.15372/GiG2020145
  27. Shaparenko E., Gibsher N., Tomilenko A., Sazonov A., Bulbak T., Ryabukha M., Khomenko M., Silyanov S., Nekrasova N., Petrova M. Ore-bearing fluids of the Blagodatnoe Gold Deposit (Yenisei Ridge, Russia): results of fluid inclusion and isotopic analyses. Minerals, 2021, no. 11, p. 1090. doi: 10.3390/min11101090
  28. Serdyuk S.S., Zabiyaka A.I., Gusarov Yu.V. Gold. Tectonics and metallogeny of the Lower Angara region. Krasnoyarsk, KNIGiMS Publ., 2004. pp. 203–221. (In Russ.)
  29. Natarov V.N. Geochemistry of the Ayakhtinskoe ore gold deposit. Proceedings of the Gold Prospecting Trust and the NIGRIZOLOTO Institute. Moscow, Leningrad, ONTI NKTP of the USSR Publ., 1937. pp. 3–48. (In Russ.)
  30. Bernstein P.S., Petrovskaya N.V. Sovetskoe gold-ore deposit (Yenisei Ridge); Geology of the major gold-ore deposits of the USSR. Moscow, Nauka Publ., 1954. Vol. 6. 162 p. (In Russ.)
  31. Vernikovsky V.A. Vernikovskaya A.E. Tectonics and evolution of granitoid magmatism in the Yenisei Ridge. Russ. Geol. Geophys., 2006, vol. 47 (1), pp. 35–52. (In Russ.) DOI: https://doi.org/10.1016/S0040-1951(03)00337-8
  32. Nevolko P.A., Borisenko A.S. Stibium mineralization at the gold-sulfide deposits of the Yenisei Range. Geology and methods of prospecting and exploration of deposits, 2009, vol. 2, pp. 11–14. (In Russ.)
  33. Sekretarev M.N., Lipishanov A.P. Forecasting and prospecting work for ore gold within the Ayakhtinsky ore cluster (South Yenisei region): report on the results of work for 2005–2006. Krasnoyarsk, 2017. 183 p. (In Russ.)
  34. Poleva T.V., Sazonov A.M. Geology of the Blagodatnoe Gold Deposit in the Yenisei Ridge. Moscow, ITKOR Publ., 2012. 290 p. (In Russ.)
  35. Serdyuk S.S. Poputninsky type of gold-sulfide mineralization of the Yenisei province. Collection of reports from the XI International Congress. Non-Ferrous Metals and Minerals. Krasnoyarsk, 2019. pp. 700–712. (In Russ.)
  36. Bakker R.J. Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 2003, vol. 194, pp. 3–23.
  37. Steele-MacInnis M., Lecumberri-Sanchez P., Bodnar R.J. A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance. Geochimica et. Cosmochimica Acta, 2012, vol. 92, pp. 14–22. doi: 10.1016/j.gca.2012.05.044
  38. Borisenko A.S. Studies of salinity of gas-liquid inclusions in minerals by the cryometric method. Russ. Geol. Geophys., 1977, no. 8, pp. 16–27. (In Russ.)
  39. Kirgintsev A.N., Trushnikova L.I., Lavrentieva V.G. Water solubility of inorganic compounds. Handbook. Leningrad, Khimiya Publ., 1972. 247 p. (In Russ.)
  40. Burke E.A.J. Raman microspectrometry of fluid inclusions. Lithos, 2001, vol. 55, pp. 139–158. doi: 10.1016/S0024-4937(00)00043-8
  41. Frezzotti M.L., Tecce F., Casagli A. Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 2012, vol. 112, pp. 1–20. doi: 10.1016/j.gexplo.2011.09.009.
  42. Palyanova G.A., Reutsky V.N., Sobolev E.S., Bortnikov N.S. Upper Triassic pyritized bivalve mollusks from the Sentachan orogenic gold-antimony deposit, Eastern Yakutia: mineralogy and sulfur isotopic composition. Geol. Ore Depos., 2016, vol. 58 (6), pp. 513–521. (In Russ.) doi: 10.1134/S1075701516060064
  43. Tarasova Y., Budyak A., Goryachev N., Skuzovatov S., Reutsky V., Gareev B., Batalin G., Nizamova A. The role of metamorphic devolatilization in building orogenic gold deposits within paleoproterozoic organic-rich sediments: P-T-X Thermobarometric and carbon isotopic constraints from the Chertovo Koryto Deposit (Eastern Siberia). Russ. J. of Pac. Geol, 2022, vol. 16, pp. 387–404. doi: 10.1134/S1819714022040078
  44. Ridley J.R., Diamond L.W. Fluid chemistry of orogenic lode gold deposits and implications for genetic models. Rev. Econ. Geol, 2000, vol. 13, pp. 141–162.
  45. Groves D.I., Santosh M., Deng J., Wang Q., Yang L., Zhang L.A holistic model for the origin of orogenic gold deposits and its implications for exploration. Mineralium Deposita, 2020, vol. 55, pp. 275–292.
  46. Tomilenko A.A., Gibsher N.A. Composition of fluids in mineralized and barren zones of the Sovetskoe quartz-gold deposit, Yenisei Ridge as Deduced from Fluid Inclusions Study. Geochem, 2001, no. 2, pp. 167–177. (In Russ.)
  47. Genkin A.D., Wagner F.E., Krylova T.L., Tsepina A.I. Gold-bearing arsenopyrite and its formation condition at the Olimpiada and Veduga gold deposits (Yenisei ridge, Siberia). Geol. Ore Depos., 2002, no. 44, pp. 59–76. (In Russ.)
  48. Obolensky A.A., Gushchina L.V., Borisenko A.S., Borovikov A.A., Pavlova G.G. Antimony in hydrothermal processes: solubility, conditions of transfer, and metal-bearing capacity of solutions. Russ. Geol. Geophys., 2007, vol. 48 (12), pp. 992–1001. (In Russ.) doi: 10.1016/j.rgg.2007.11.006
  49. Gibsher N.A., Tomilenko A.A., Sazonov A.M., Ryabukha M.A., Timkina A.L. The Gerfed gold deposit: fluids and PT-conditions for quartz vein formation (Yenisei Ridge, Russia). Russ. Geol. Geophys., 2011, vol. 52, pp. 1461–1473. (In Russ.) DOI: https://doi.org/10.1016/j.rgg.2011.10.014
  50. Ryabukha M.A., Gibsher N.A., Tomilenko A.A., Bulbak T.A., Khomenko M.O., Sazonov A.M. PTX-parameters of metamorphogene and hydrothermal fluids; isotopy and age of formation of the Bogunai gold deposit southern Yenisei ridge (Russia). Russ. Geol. Geophys., 2015, vol. 56 (6), pp. 1153–1172. (In Russ.)
  51. Gibsher N.A., Tomilenko A.A., Sazonov A.M., Bulbak T.A., Khomenko M.O., Ryabukha M.A., Shaparenko E.O., Silyanov S.A., Nekrasova N.A. Ore-bearing fluids of the Eldorado gold deposit (Yenisei Ridge, Russia). Russ. Geol. Geophys., 2018, vol. 59, pp. 983–996. (In Russ.) DOI: https://doi.org/10.1016/j.rgg.2018.07.018
  52. Roedder E. Fluid inclusions in minerals. Moscow, Mir Publ., 1987. Vol. 1, 558 p. (In Russ.)
  53. Phillips G.N., Evans K.A. Role of CO2 in the formation of gold deposits. Nature, 2004, vol. 429, pp. 860–863. doi: 10.1038/nature02644
  54. Balikov S.V., Dementyev V.E. Gold: properties. Geochemical aspects. Irkutsk, Irgiredmet Publ., 2015. 328 p. (In Russ.)
  55. Ivanov V.P., Timkin T.V., Boldina D.A., Pakhtaeva M.G. Features of determining organometallic compounds in organic matters of black shale using diffuse reflectance infrared Fourier transform spectroscopy. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 2024, vol. 335, no. 2, pp. 141–156. (In Russ.) doi: 10.18799/24131830/2024/2/4462
  56. Migdisov A.A., Guo X., Xu H., Williams-Jones A.E., Sun C.J., Vasyukova O., Sugiyama I., Fuchs S., Pearce K., Roback R. Hydrocarbons as ore fluids. Geochem. Persp. Let, 2017, vol. 5, pp. 47–52.
  57. Greenwood P.F., Brocks J.J., Grice K., Schwark L., Dick J.M., Evans K.A. Organic geochemistry and mineralogy. I. Characterization of organic matter associated with metal deposits. Ore Geol. Rev., 2013, no. 50, pp. 1–27. doi: 10.1016/j.oregeorev.2012.10.004
  58. Pearcy E.C., Burruss R.C. Hydrocarbons and gold mineralization in the hot-spring deposit at Cherry Hill, California. Bitumens in ore deposits. Special Publication of the Society for Geology Applied to Mineral Deposits. Berlin, Heidelberg, 1993. Vol. 9, pp. 117–137. doi: 10.1007/978-3-642-85806-2_8
  59. Gaboury D. Does gold in orogenic deposits come from pyrite in deeply buried carbon-rich sediments?: Insight from volatiles in fluid inclusions. Geology, 2013, vol. 41 (12), pp. 1207–1210. doi: 10.1130/G34788.1
  60. Gaboury D., Genna D., Trottier J., Bouchard M., Augustin J., Malcolm K. The Perron gold deposit, Archean Abitibi belt, Canada: exceptionally high-grade mineralization related to higher gold-carrying capacity of hydrocarbon-rich fluids. Minerals, 2021, vol. 11 (10), p. 1066. doi: 10.3390/min11101066
  61. Kubrakova I.V., Nabiullina S.N., Pryazhnikov D.V., Kiseleva M.S. Organic matter as a forming and transporting agent in transfer processes of PGE and gold. Geochemistry, 2022, vol. 67 (8), pp. 741–749. (In Russ.)
  62. Bottrell S.H., Miller M.F. The geochemical behaviour of nitrogen compounds during the formation of black shale hosted quartz–vein gold deposits, north Wales. Applied Geochemistry, 1990, vol. 5, Iss. 3, pp. 289–296.
  63. Pokrovski G.S., Kokh M.A., Guillaume D., Borisova A.Y., Gisquet P., Hazemann J.-L., Lahera E., Del Net W., Proux O., Testemale D., Testelman D., Haigis V., Jonchière R., Seitsonen A.P., Ferlat G., Vuilleumier R., Marco Saitta A., Boiron M.-C., Dubessy J. Sulfur radical species form gold deposits on Earth. Proceedings of the National Academy of Sciences, 2015, vol. 112, pp. 13484–13489. doi: 10.1073/pnas.1506378112
  64. Galimov E.M. Geochemistry of Stable Carbon Isotopes. Moscow, Nedra Publ., 1968. 300 p. (In Russ.)
  65. Hoefs I. Geochemistry of stable isotopes. Moscow, Mir Publ., 1983. 200 p. (In Russ.)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–Compartilhalgual 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».