Ayakhta gold-quartz deposit (Yenisei Ridge): formation conditions and source of fluids
- Autores: Petrova M.A.1, Gibsher N.A.1, Shaparenko E.O.1, Tomilenko A.A.1, Bulbak T.A.1, Sazonov A.M.2, Khomenko M.O.1, Silyanov S.A.2
-
Afiliações:
- Sobolev Institute of Geology and Мinerаlоgу, Siberian Вrаnсh of the Russian Academy of Sciences
- Siberian Federal University
- Edição: Volume 336, Nº 3 (2025)
- Páginas: 74-88
- Seção: Articles
- URL: https://ogarev-online.ru/2500-1019/article/view/288660
- DOI: https://doi.org/10.18799/24131830/2025/3/4673
- ID: 288660
Citar
Texto integral
Resumo
Relevance. The need to establish the parameters of ore-bearing fluids of the Ayakhta gold deposit, one of the standard and large objects in the Yenisei Ridge. The data obtained can be used to develop a holistic model of gold mineralization in the region.
Aim. To determine the physicochemical conditions for the formation of quartz vein zones and ore-bearing fluids source.
Methods. We analyzed the ore minerals composition by micro-X-ray spectral analysis, determined the temperatures of phase transitions in fluid inclusions using the microthermometry method, determined the individual fluid inclusions composition by Raman spectroscopy. The fluid bulk composition was analyzed by gas chromatography-mass spectrometry (GC-MS). To establish the source of the fluid, we used isotopes of sulfur (δ34S) sulfides and carbon dioxide (δ13C) in fluid inclusions in quartz.
Results and conclusions. We established that the gold-quartz vein zones formation occurred under medium temperature conditions (121–424°C) with significant pressure fluctuations (0.5–1.5 kbar). The fluid salinity was moderate (up to 25.5 wt %, NaCl-eq.). Using the GC-MS method, we detected from 178 to 286 compounds in the ore-bearing fluid, H2O and CO2 predominate among them. The share of hydrocarbons, their derivatives, S-, N- and halogenated compounds in total accounts for 7.4–22.6 rel. %. We assume that organic compounds were directly involved in the enrichment of quartz veins with gold mineralization. The isotope composition values of sulfur (+6.6…+9.5 ‰) and carbon from fluid inclusions in quartz (–12.5…–21.9 ‰) indicate a metamorphic-crustal source of fluids.
Palavras-chave
Sobre autores
Marina Petrova
Sobolev Institute of Geology and Мinerаlоgу, Siberian Вrаnсh of the Russian Academy of Sciences
Email: petrovama@igm.nsc.ru
Postgraduate Student, Engineer
Rússia, 3, Academician Koptyug avenue, Novosibirsk, 630090Nadezhda Gibsher
Sobolev Institute of Geology and Мinerаlоgу, Siberian Вrаnсh of the Russian Academy of Sciences
Email: gibsher@igm.nsc.ru
Cand. Sc., Senior Researcher
Rússia, 3, Academician Koptyug avenue, Novosibirsk, 630090Elena Shaparenko
Sobolev Institute of Geology and Мinerаlоgу, Siberian Вrаnсh of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: shaparenko@igm.nsc.ru
ORCID ID: 0000-0001-6421-433X
Cand. Sc., Researcher
Rússia, 3, Academician Koptyug avenue, Novosibirsk, 630090Anatoly Tomilenko
Sobolev Institute of Geology and Мinerаlоgу, Siberian Вrаnсh of the Russian Academy of Sciences
Email: tomilen@igm.nsc.ru
Dr. Sc., Chief Researcher
Rússia, 3, Academician Koptyug avenue, Novosibirsk, 630090Taras Bulbak
Sobolev Institute of Geology and Мinerаlоgу, Siberian Вrаnсh of the Russian Academy of Sciences
Email: taras@igm.nsc.ru
Cand. Sc., Senior Researcher
Rússia, 3, Academician Koptyug avenue, Novosibirsk, 630090Anatoly Sazonov
Siberian Federal University
Email: ASazonov@sfu-kras.ru
Dr. Sc., Professor
Rússia, 79, Svobodny avenue, Krasnoyarsk, 660041Margarita Khomenko
Sobolev Institute of Geology and Мinerаlоgу, Siberian Вrаnсh of the Russian Academy of Sciences
Email: homenko@igm.nsc.ru
Junior Researcher
Rússia, 3, Academician Koptyug avenue, Novosibirsk, 630090Sergey Silyanov
Siberian Federal University
Email: silyanov-s@mail.ru
Cand. Sc., Associate Professor
Rússia, 79, Svobodny avenue, Krasnoyarsk, 660041Bibliografia
- Brovkov G.N., Li L.V. Geology and metallogeny of the Yenisei Ore Belt. Krasnoyarsk, KNIIGGiMS Publ., 1985. 291 p. (In Russ.)
- Polyakov A.V. Assessment of efficiency of development of the group of gold deposits by the example of Razdolinsky ore cluster. State and Problems of Geological Study of Subsoil and Development of Mineral and Raw Material Base of Krasnoyarsk Region. Krasnoyarsk, KNIIGiMS Publ., 2003. pp. 239–241. (In Russ.)
- Serdyuk S.S., Komorovsky Y.E., Zverev A.I., Oyaber V.K., Vlasov V.S., Babushkin V.E., Kirillenko V.A., Zemlyansky S. Models of gold deposits in Yenisei Siberia. Krasnoyarsk, Siberian Federal University Publ., 2010. 584 p. (In Russ.).
- Goryachev N.A. Gold deposits in the Earth’s history. Geol. Ore Depos., 2019, vol. 61 (6), pp. 495–511. (In Russ.) doi: 10.31857/S0016-77706163-18
- Sazonov A.M., Ananyev A.A., Poleva T.V., Khokhlov A.N., Vlasov V.S., Zvyagina E.A., Fedorova A.V., Tishin P.A., Leontiev S.I. Gold ore metallogeny of the Yenisei ridge: Geological-structural position, structural types of ore fields. Tekhnika I Tekhnologii Zh., 2010, vol. 3 (4), pp. 371–395. (In Russ.)
- Budyak A.E., Tarasova Yu.I., Goryachev N.A. Blinov A.V., Ignatiev A.V., Velivetskaya T.A., Abramova V.D., Shcherbakov D.Yu. Ore mineralization of the Ozherelye deposit: comparison with objects of the “Sukhoi Log” type. Doklady Earth Siences, 2023, vol. 509, no. 2, pp. 198–207. (In Russ.) doi: 10.31857/S268673972260223X
- Safonov Yu.G. Gold and gold-bearing deposits of the world: genesis and metallogenic potential. Geol. Ore Depos., 2003, vol. 45 (4), pp. 265–278. (In Russ.)
- Goldfarb R.J., Groves D.I. Orogenic gold: common vs. evolving fluid and metal sources through time. Lithos, 2015, vol. 223, pp. 2–26. doi: 10.1016/j.lithos.2015.07.011
- Gaboury D., MacKenzie D., Craw D. Fluid volatile composition associated with orogenic gold mineralization, Otago Schist, New Zealand: implications of H2 and C2H6 for fluid evolution and gold source. Ore Geology Reviews, 2021, vol. 133, 104086. doi: 10.1016/j.oregeorev.2021.104086
- Silyanov S.A., Sazonov A.M., Naumov E.A., Lobastov B.M., Zvyagina Y.A., Artemyev D.A., Nekrasova N.A., Pirajno F. Mineral paragenesis, formation stages and trace elements in sulfides of the Olympiada Gold Deposit (Yenisei Ridge, Russia). Ore Geology Reviews, 2022, 104750. doi: 10.1016/j.oregeorev.2022.104750
- Li L.V. Gold deposits of the Yenisei Ridge. Geology and minerals of Central Siberia. Krasnoyarsk, KNIIGGiMS Publ., 1997. pp. 184–222. (In Russ.)
- Tomilenko A.A. Gibsher, N.A., Dublyansky, Y.V., Dallai L. Geochemical and isotopic properties of fluids from gold-bearing and barren quartz veins of the Sovetskoye gold deposit (Siberia, Russia). Econ. Geol, 2010, vol. 105 (2), pp. 375–394. doi: 10.2113/gsecongeo.105.2.375
- Kryazhev S.G. Genetic models and criteria for prediction of gold deposits in carbon-terrigenous complexes. Dr. Diss. Abstract. Moscow, 2017. 52 p. (In Russ.).
- Shaparenko E.O. Physico-chemical conditions of the Blagodantnoe and Dobroe Gold deposits formation (Yenisei Ridge). Cand. Diss. Abstract. Novosibirsk, 2022. 22 p. (In Russ.)
- Bortnikov N.S., Prokovev V.Y., Razdolina N.V. Origin of the Charmitan gold-quartz deposit (Uzbekistan). Geol. Ore Depos., 1996, vol. 38, pp. 238–256. (In Russ.)
- Kryazhev S.G. Isotope-geochemical regime of the formation of the gold ore deposit Muruntau. Moscow, TsNIGRI Publ., 2002. 91 p. (In Russ.)
- Safonov Y.G., Prokofev, V.Yu. Model of cosedimentation hydrothermal formation of gold-bearing reefs of the Witwatersrand basin. Geol. Ore Depos., 2006, vol. 48 (6), pp. 475–511. (In Russ.)
- Khomenko M.O., Gibsher N.A., Tomilenko A.A., Bulbak T.A., Ryabukha M.A., Semenova D.V. Physicochemical parameters and age of the Vasilkovskoe gold deposit (Northern Kazakhstan). Russ. Geol. Geophys., 2016, vol. 57, pp. 1728–1749. (In Russ.) doi: 10.1016/j.rgg.2016.04.010
- Gibsher N.A., Ruabukha M.A., Tomilenko A.A., Sazonov A.M., Khomenko M.O., Bul’bak T.A., Nekrasova N.A. Metal-bearing fluids and the age of the Panimba gold deposits (Yenisei Ridge, Russia). Russ. Geol. Geophys., 2017, vol. 58, pp. 1366–1383. (In Russ.) doi: 10.1016/j.rgg.2017.11.004
- Li X.H., Fan H.R., Hu F.F., Hollings P., Yang K.F., Liu X. Linking lithospheric thinning and magmatic evolution of late Jurassic to early cretaceous granitoids in the Jiaobei Terrane, southeastern North China Craton. Lithos, 2019, vol. 325, pp. 280–296. doi: 10.1016/j.lithos.2018.11.022
- Kryazhev S.G., Fridovsky V.Y. Fluid regime of orogenic gold deposits formation within the Yana–Kolyma gold-bearing belt. J. Geol. Pac. Ocean, 2023, vol. 42 (6), pp. 118–130. (In Russ.) doi: 10.30911/0207-4028-2023-42-6-118-130
- Gibsher N.A., Tomilenko A.A., Sazonov A.V., Bulbak T.A., Ryabukha M.A., Silyanov S.A., Nekrasova N.A., Khomenko M.O., Shaparenko E.O. The Olimpiadinskoe Gold Deposit (Yenisei Ridge): temperature, pressure, composition of ore-forming fluids, δ34S in sulfides, 3He/4He of fluids, Ar–Ar age and duration of formation. Russ. Geol. Geophys., 2019, vol. 60 (9), pp. 1043–1059. (In Russ.) doi: 10.15372/GiG2019073
- Hu M., Chou I-M., Wang R., Shang L., Chen C. High solubility of gold in H2S-H2O±NaCl fluids at 100–200 MPa and 600–800 °C: a synthetic fluid inclusion study. Geochimica et Cosmochimica Acta, 2022, vol. 330, pp. 116–130. doi: 10.1016/j.gca.2022.03.006
- Shaparenko E., Gibsher N., Khomenko M., Tomilenko A., Sazonov A., Bulbak T., Silyanov S., Petrova M., Ryabukha M. Parameters for the formation of the Dobroe Gold deposit (Yenisei Ridge, Russia): evidence from fluid inclusions and S–C isotopes. Minerals, 2023, vol. 13 (1), p. 11. doi: 10.3390/min13010011
- Zhang Z., Zeng Q., Fan H.-R., Bai R., Wu J., Li X., Zhang Y., Huang L. Characterization of deep ore-forming fluid in the Zhaoxian gold deposit within the Jiaodong gold province: insights from quartz vein fluid inclusion, in-situ trace element analysis, and S isotopic composition in pyrite. Front. Earth Sci, 2024, 12:1354261. doi: 10.3389/feart.2024.1354261
- Bulbak T.А., Tomilenko А.А., Gibsher N.А., Sazonov А.M., Shaparenko E.O., Ryabukha M.А., Khomenko M.O., Silyanov S.A., Nekrasova N.A. Hydrocarbons in fluid inclusions from native gold, pyrite, and quartz of the Sovetskoe Deposit (Yenisei Ridge, Russia) according to pyrolysis-free gas chromatography-mass spectrometry data. Russ. Geol. Geophys., 2020, vol. 61 (11), pp. 1260–1282. (In Russ.) doi: 10.15372/GiG2020145
- Shaparenko E., Gibsher N., Tomilenko A., Sazonov A., Bulbak T., Ryabukha M., Khomenko M., Silyanov S., Nekrasova N., Petrova M. Ore-bearing fluids of the Blagodatnoe Gold Deposit (Yenisei Ridge, Russia): results of fluid inclusion and isotopic analyses. Minerals, 2021, no. 11, p. 1090. doi: 10.3390/min11101090
- Serdyuk S.S., Zabiyaka A.I., Gusarov Yu.V. Gold. Tectonics and metallogeny of the Lower Angara region. Krasnoyarsk, KNIGiMS Publ., 2004. pp. 203–221. (In Russ.)
- Natarov V.N. Geochemistry of the Ayakhtinskoe ore gold deposit. Proceedings of the Gold Prospecting Trust and the NIGRIZOLOTO Institute. Moscow, Leningrad, ONTI NKTP of the USSR Publ., 1937. pp. 3–48. (In Russ.)
- Bernstein P.S., Petrovskaya N.V. Sovetskoe gold-ore deposit (Yenisei Ridge); Geology of the major gold-ore deposits of the USSR. Moscow, Nauka Publ., 1954. Vol. 6. 162 p. (In Russ.)
- Vernikovsky V.A. Vernikovskaya A.E. Tectonics and evolution of granitoid magmatism in the Yenisei Ridge. Russ. Geol. Geophys., 2006, vol. 47 (1), pp. 35–52. (In Russ.) DOI: https://doi.org/10.1016/S0040-1951(03)00337-8
- Nevolko P.A., Borisenko A.S. Stibium mineralization at the gold-sulfide deposits of the Yenisei Range. Geology and methods of prospecting and exploration of deposits, 2009, vol. 2, pp. 11–14. (In Russ.)
- Sekretarev M.N., Lipishanov A.P. Forecasting and prospecting work for ore gold within the Ayakhtinsky ore cluster (South Yenisei region): report on the results of work for 2005–2006. Krasnoyarsk, 2017. 183 p. (In Russ.)
- Poleva T.V., Sazonov A.M. Geology of the Blagodatnoe Gold Deposit in the Yenisei Ridge. Moscow, ITKOR Publ., 2012. 290 p. (In Russ.)
- Serdyuk S.S. Poputninsky type of gold-sulfide mineralization of the Yenisei province. Collection of reports from the XI International Congress. Non-Ferrous Metals and Minerals. Krasnoyarsk, 2019. pp. 700–712. (In Russ.)
- Bakker R.J. Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 2003, vol. 194, pp. 3–23.
- Steele-MacInnis M., Lecumberri-Sanchez P., Bodnar R.J. A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance. Geochimica et. Cosmochimica Acta, 2012, vol. 92, pp. 14–22. doi: 10.1016/j.gca.2012.05.044
- Borisenko A.S. Studies of salinity of gas-liquid inclusions in minerals by the cryometric method. Russ. Geol. Geophys., 1977, no. 8, pp. 16–27. (In Russ.)
- Kirgintsev A.N., Trushnikova L.I., Lavrentieva V.G. Water solubility of inorganic compounds. Handbook. Leningrad, Khimiya Publ., 1972. 247 p. (In Russ.)
- Burke E.A.J. Raman microspectrometry of fluid inclusions. Lithos, 2001, vol. 55, pp. 139–158. doi: 10.1016/S0024-4937(00)00043-8
- Frezzotti M.L., Tecce F., Casagli A. Raman spectroscopy for fluid inclusion analysis. Journal of Geochemical Exploration, 2012, vol. 112, pp. 1–20. doi: 10.1016/j.gexplo.2011.09.009.
- Palyanova G.A., Reutsky V.N., Sobolev E.S., Bortnikov N.S. Upper Triassic pyritized bivalve mollusks from the Sentachan orogenic gold-antimony deposit, Eastern Yakutia: mineralogy and sulfur isotopic composition. Geol. Ore Depos., 2016, vol. 58 (6), pp. 513–521. (In Russ.) doi: 10.1134/S1075701516060064
- Tarasova Y., Budyak A., Goryachev N., Skuzovatov S., Reutsky V., Gareev B., Batalin G., Nizamova A. The role of metamorphic devolatilization in building orogenic gold deposits within paleoproterozoic organic-rich sediments: P-T-X Thermobarometric and carbon isotopic constraints from the Chertovo Koryto Deposit (Eastern Siberia). Russ. J. of Pac. Geol, 2022, vol. 16, pp. 387–404. doi: 10.1134/S1819714022040078
- Ridley J.R., Diamond L.W. Fluid chemistry of orogenic lode gold deposits and implications for genetic models. Rev. Econ. Geol, 2000, vol. 13, pp. 141–162.
- Groves D.I., Santosh M., Deng J., Wang Q., Yang L., Zhang L.A holistic model for the origin of orogenic gold deposits and its implications for exploration. Mineralium Deposita, 2020, vol. 55, pp. 275–292.
- Tomilenko A.A., Gibsher N.A. Composition of fluids in mineralized and barren zones of the Sovetskoe quartz-gold deposit, Yenisei Ridge as Deduced from Fluid Inclusions Study. Geochem, 2001, no. 2, pp. 167–177. (In Russ.)
- Genkin A.D., Wagner F.E., Krylova T.L., Tsepina A.I. Gold-bearing arsenopyrite and its formation condition at the Olimpiada and Veduga gold deposits (Yenisei ridge, Siberia). Geol. Ore Depos., 2002, no. 44, pp. 59–76. (In Russ.)
- Obolensky A.A., Gushchina L.V., Borisenko A.S., Borovikov A.A., Pavlova G.G. Antimony in hydrothermal processes: solubility, conditions of transfer, and metal-bearing capacity of solutions. Russ. Geol. Geophys., 2007, vol. 48 (12), pp. 992–1001. (In Russ.) doi: 10.1016/j.rgg.2007.11.006
- Gibsher N.A., Tomilenko A.A., Sazonov A.M., Ryabukha M.A., Timkina A.L. The Gerfed gold deposit: fluids and PT-conditions for quartz vein formation (Yenisei Ridge, Russia). Russ. Geol. Geophys., 2011, vol. 52, pp. 1461–1473. (In Russ.) DOI: https://doi.org/10.1016/j.rgg.2011.10.014
- Ryabukha M.A., Gibsher N.A., Tomilenko A.A., Bulbak T.A., Khomenko M.O., Sazonov A.M. PTX-parameters of metamorphogene and hydrothermal fluids; isotopy and age of formation of the Bogunai gold deposit southern Yenisei ridge (Russia). Russ. Geol. Geophys., 2015, vol. 56 (6), pp. 1153–1172. (In Russ.)
- Gibsher N.A., Tomilenko A.A., Sazonov A.M., Bulbak T.A., Khomenko M.O., Ryabukha M.A., Shaparenko E.O., Silyanov S.A., Nekrasova N.A. Ore-bearing fluids of the Eldorado gold deposit (Yenisei Ridge, Russia). Russ. Geol. Geophys., 2018, vol. 59, pp. 983–996. (In Russ.) DOI: https://doi.org/10.1016/j.rgg.2018.07.018
- Roedder E. Fluid inclusions in minerals. Moscow, Mir Publ., 1987. Vol. 1, 558 p. (In Russ.)
- Phillips G.N., Evans K.A. Role of CO2 in the formation of gold deposits. Nature, 2004, vol. 429, pp. 860–863. doi: 10.1038/nature02644
- Balikov S.V., Dementyev V.E. Gold: properties. Geochemical aspects. Irkutsk, Irgiredmet Publ., 2015. 328 p. (In Russ.)
- Ivanov V.P., Timkin T.V., Boldina D.A., Pakhtaeva M.G. Features of determining organometallic compounds in organic matters of black shale using diffuse reflectance infrared Fourier transform spectroscopy. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 2024, vol. 335, no. 2, pp. 141–156. (In Russ.) doi: 10.18799/24131830/2024/2/4462
- Migdisov A.A., Guo X., Xu H., Williams-Jones A.E., Sun C.J., Vasyukova O., Sugiyama I., Fuchs S., Pearce K., Roback R. Hydrocarbons as ore fluids. Geochem. Persp. Let, 2017, vol. 5, pp. 47–52.
- Greenwood P.F., Brocks J.J., Grice K., Schwark L., Dick J.M., Evans K.A. Organic geochemistry and mineralogy. I. Characterization of organic matter associated with metal deposits. Ore Geol. Rev., 2013, no. 50, pp. 1–27. doi: 10.1016/j.oregeorev.2012.10.004
- Pearcy E.C., Burruss R.C. Hydrocarbons and gold mineralization in the hot-spring deposit at Cherry Hill, California. Bitumens in ore deposits. Special Publication of the Society for Geology Applied to Mineral Deposits. Berlin, Heidelberg, 1993. Vol. 9, pp. 117–137. doi: 10.1007/978-3-642-85806-2_8
- Gaboury D. Does gold in orogenic deposits come from pyrite in deeply buried carbon-rich sediments?: Insight from volatiles in fluid inclusions. Geology, 2013, vol. 41 (12), pp. 1207–1210. doi: 10.1130/G34788.1
- Gaboury D., Genna D., Trottier J., Bouchard M., Augustin J., Malcolm K. The Perron gold deposit, Archean Abitibi belt, Canada: exceptionally high-grade mineralization related to higher gold-carrying capacity of hydrocarbon-rich fluids. Minerals, 2021, vol. 11 (10), p. 1066. doi: 10.3390/min11101066
- Kubrakova I.V., Nabiullina S.N., Pryazhnikov D.V., Kiseleva M.S. Organic matter as a forming and transporting agent in transfer processes of PGE and gold. Geochemistry, 2022, vol. 67 (8), pp. 741–749. (In Russ.)
- Bottrell S.H., Miller M.F. The geochemical behaviour of nitrogen compounds during the formation of black shale hosted quartz–vein gold deposits, north Wales. Applied Geochemistry, 1990, vol. 5, Iss. 3, pp. 289–296.
- Pokrovski G.S., Kokh M.A., Guillaume D., Borisova A.Y., Gisquet P., Hazemann J.-L., Lahera E., Del Net W., Proux O., Testemale D., Testelman D., Haigis V., Jonchière R., Seitsonen A.P., Ferlat G., Vuilleumier R., Marco Saitta A., Boiron M.-C., Dubessy J. Sulfur radical species form gold deposits on Earth. Proceedings of the National Academy of Sciences, 2015, vol. 112, pp. 13484–13489. doi: 10.1073/pnas.1506378112
- Galimov E.M. Geochemistry of Stable Carbon Isotopes. Moscow, Nedra Publ., 1968. 300 p. (In Russ.)
- Hoefs I. Geochemistry of stable isotopes. Moscow, Mir Publ., 1983. 200 p. (In Russ.)
Arquivos suplementares
