Vol 26, No 2 (2024)

Mathematics

About One Groupoid Associated with the Composition of Multilayer Feedforward Neural Networks

Litavrin A.V., Moiseenkova T.V.

Abstract

The authors construct a groupoid whose elements are associated with multilayer feedforward neural networks. This groupoid is called the complete groupoid of the composition of neural networks. Multilayer feedforward neural networks (hereinafter referred to as neural networks) are modelled by defining a special type of tuple. Its components define layers of neurons and structural mappings that specify weights of synaptic connections, activation functions and threshold values. Using the artificial neuron model (that of McCulloch-Pitts) for each such tuple it is possible to define a mapping that models the operation of a neural network as a computational circuit. This approach differs from defining a neural network using abstract automata and related constructions. Modeling neural networks using the proposed method makes it possible to describe the architecture of the network (that is, the network graph, the synaptic weights, etc.). The operation in the full neural network composition groupoid models the composition of two neural networks. A network, obtained as the product of a pair of neural networks, operates on input signals by sequentially applying original networks and contains information about their structure. It is proved that the constructed groupoid is a free.

Middle Volga Mathematical Society journal. 2024;26(2):111-122
pages 111-122 views

Modified projection generalized two-point two-stage extragradient quasinewton method for saddle point problems

Malinov V.G.

Abstract

The purpose of this work is to investigate a new method mentioned in the article’s name. This method is designed for solving saddle problems with convexo-concave differentiable function that is defined on a convex closed subset of some finite-dimensional euclidean space and has “ravine’’ level hypersurfaces. The paper contains a brief survey of native publications devoted to new projection gradient methods for solving saddle problems. A mathematical statement of a saddle problem, information about solution method, some auxiliary inequalities, and method’s convergence are discussed in the article as well. Moreover, iterative formulas are exemplified for another perspective saddle method for convexo-concave differentiable saddle functions, which may be validated as well as formulas proved in this work. New auxiliary inequalities complete mathematical apparatus of convex analysis for justification of convergence and rate of convergence and have value also for justification of another methods of operations research. By using obtained inequalities, convex analysis and numerical mathematics, convergence of the saddle method for convexo-concave smooth saddle functions with Lipschitz partial gradients is proved. Under supplementary conditions, for twice continuously differentiable saddle functions, superlinear and quadratic rate of convergence of saddle method are proved, too.

Middle Volga Mathematical Society journal. 2024;26(2):123-142
pages 123-142 views

Applied mathematics and mechanics

Application of computational algorithms with higher order of accuracy to the modeling of two-dimensional problems on development of hydrodynamic instability

Zhalnin R.V., Kulyagin A.I., Nefedov M.S.

Abstract

This article examines application of computational algorithms with an increased order of accuracy for modeling two-dimensional problems of development of hydrodynamic instabilities. The efficiency of using algorithms to improve the accuracy and reliability of modeling in this area is considered. More specifically, the paper describes a numerical algorithm for solving the problem of development of Richtmayer-Meshkov instability. To construct the algorithm, the authors use the WENO scheme of the fifth order of accuracy Several problems are solved numerically using the developed method. The article models such processes as flows at a time of 4 046 microseconds, a change in the width of the region filled with sulfur hexafluoride, numerical schlieren patterns at a time of 877 microseconds, a change in the width of the region filled with heavy gas. The results are obtained by various methods on grids of different dimensions and compared with experimental data. It is shown that schemes with WENO reconstruction of the 5th order of accuracy demonstrate results closer to full-scale experiments.

Middle Volga Mathematical Society journal. 2024;26(2):143-156
pages 143-156 views

Mathematical modeling and computer science

Continuum Model of Peridynamics for Brittle Fracture Problems

Deryugin Y.N., Shishkanov D.A.

Abstract

The article investigates the nonlocal method of peridynamics, which makes it possible to simulate the brittle fracture of a solid body without using spatial derivatives. The basic motion equation of a particle with a given volume is written in integral form. A model combining the key features of continuum mechanics and of the nonlocal method is considered. To determine the forces of pair interaction, the dependence of the Cauchy stress tensor on the rate-of strain tensor was used. This formulation correctly describes the behavior of the material during damage and allows to get rid of the limitations inherent to simple bond-based model and ordinary state-based model. The maximum value of the tensile stress is used as a criterion of fracture, which describes the process of nucleation and evolution of damage. To test the implemented model, tasks in a two-dimensional formulation were used. Using the example of the elastic problem about uniaxial tension of a thin rod, the convergence of the numerical solution is shown with a decrease of interaction horizon and an increase of particles number. The second task demonstrates the capabilities of the implemented model to describe the nucleation and evolution of a crack under uniaxial load on a plate with an initial horizontal defect.

Middle Volga Mathematical Society journal. 2024;26(2):157-174
pages 157-174 views

Hydrodynamic mechanism for dynamical structure formation of a system of rotating particles

Martynov S.I., Tkach L.Y.

Abstract

Based on the hydrodynamic mechanism, which takes into account the interaction of all particles, a numerical simulation of the formation of a dynamical structure in a viscous fluid was carried out. This structure is a result of the collective dynamics of rotating particles in the fluid. It is supposed that the particles have a magnetic moment and are driven into rotation by an external variable uniform magnetic field. The results of numerical modeling of collective dynamics are presented for three initial structures that can be formed by interacting dipole particles in the absence of an external magnetic field. Such equilibrium structures are a straight chain, a closed chain, and a periodic structure in the form of a flat system of particle chains. The rotation of particles sets the surrounding fluid in motion, whose flow creates hydrodynamic forces and moments that move the particles. The collective dynamics of a system of rotating particles leads to the formation of a new dynamical structure from the original one, and this new structure has its own characteristic features for each case considered. A qualitative comparison of the results of the dynamics for a particles’ system set in motion due to the action of an external moment or an external force is carried out. The proposed hydrodynamic mechanism for the formation of a dynamical structure as a result of the collective dynamics of a rotating particles’ system can be used to control structure formation in a liquid-particle system.

Middle Volga Mathematical Society journal. 2024;26(2):175-194
pages 175-194 views

Mathematical life

In memory of Ilya Vladimirovich Boykov

Middle Volga Mathematical Society journal. 2024;26(2):195-196
pages 195-196 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».