Модифицированный проекционный обобщённый двухточечный двухэтапный экстраградиентный квазиньютоновский метод решения седловых задач

Обложка

Цитировать

Полный текст

Аннотация

Цель работы состоит в полном исследовании нового, указанного в заголовке статьи метода, предназначенного для решения седловой задачи с выпукло-вогнутой непрерывно дифференцируемой седловой функцией, определенной на выпуклом замкнутом подмножестве конечномерного евклидова пространства и имеющей “овражные” гиперповерхности уровней. В статье приведен краткий обзор отечественных публикаций об исследовании новых проекционных градиентных методов решения седловой задачи, содержится описание и математическая постановка седловой задачи, сведения о методе решения задачи, некоторые необходимые вспомогательные неравенства, доказательство сходимости и оценок скорости сходимости метода. Так же приведены итерационные формулы еще одного перспективного метода решения седловых задач для выпукло вогнутых дифференцируемых функций, обоснование которого может быть проведено аналогично данному для исследованного в статье метода. Новые вспомогательные неравенства, представляющие самостоятельную ценность также и для обоснования других методов исследования операций, дополняют необходимый для обоснования сходимости и оценки скорости сходимости седлового метода математический аппарат выпуклого анализа. С помощью приведённых вспомогательных неравенств и инструментария выпуклого анализа, сначала доказана сходимость седлового метода для выпукло-вогнутых гладких функций с Липшицевыми частными градиентами. При дополнительных условиях, для дважды непрерывно дифференцируемых седловых функций, доказаны и сверхлинейная, и квадратичная скорости сходимости седлового метода. 

Полный текст

1.      Введение

В интенсивно развивающемся разделе вычислительной математики востребованы как непрерывные, так и итеративные методы решения седловых и равновесных задач. Мы рассматриваем итеративные проекционные методы отыскания седловых точек (ИПМОСТ). Напомним, что по определению, для всякой функции φ(x,y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyEaiaaiMcaaaa@3BCA@ , xQ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI Giolaadgfaaaa@394E@ , uU MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI Giolaadwfaaaa@394F@ , с непустыми выпуклыми и замкнутыми множествами Q E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabgk OimlaadweadaahaaWcbeqaaiaad6gaaaaaaa@3AB3@  и U E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiabgk OimlaadweadaahaaWcbeqaaiaad2gaaaaaaa@3AB6@ , в евклидовых пространствах E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaCa aaleqabaGaamOBaaaaaaa@37E1@  и E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaCa aaleqabaGaamyBaaaaaaa@37E0@ , точку ( x * , u * )Q×U E n × E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqabaGa aGOkaaaakiaaiMcacqGHiiIZcaWGrbGaey41aqRaamyvaiabgkOiml aadweadaahaaWcbeqaaiaad6gaaaGccqGHxdaTcaWGfbWaaWbaaSqa beaacaWGTbaaaaaa@491A@ , называют седловой точкой функции, если эта точка есть решение системы неравенств

φ( x * ,u)φ( x * , u * )φ(x, u * )xQ,uU. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDaiaaiMca cqGHKjYOcqaHgpGAcaaIOaGaamiEamaaCaaaleqabaGaaGOkaaaaki aaiYcacaWG1bWaaWbaaSqabeaacaaIQaaaaOGaaGykaiabgsMiJkab eA8aQjaaiIcacaWG4bGaaGilaiaadwhadaahaaWcbeqaaiaaiQcaaa GccaaIPaGaaGjbVlaaysW7cqGHaiIicaWG4bGaeyicI4Saamyuaiaa iYcacaWG1bGaeyicI4Saamyvaiaai6caaaa@5A81@ (1.1)

 Седловой задачей называют задачу отыскания седловой точки. Седловым методом называют метод численного решения седловой задачи.

Известно, что к решению седловой задачи приводят экстремальные задачи математической физики, теории игр, математической экономики, оптимального управления и другие. Часто ИПМОСТ строятся на основе известных методов оптимизации (см., например, [1] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  [9]). В работах [1] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  [3], [7] имеются обзоры, в [8] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  [11] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  краткие обзоры, публикаций об исследовании методов решения седловых задач.

Простейший ИПМОСТ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  это известный метод проекции градиента (МПГ) седловой, который решает для выпукло-вогнутых гладких функций φ(x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyDaiaaiMcaaaa@3BC6@  седловые задачи с хорошими (“неовражными”) гиперповерхностями уровней.

В связи с нуждами решения седловых задач науки и приложений, разрабатываются и обосновываются высокоскоростные методы их решения для седловых функций с “овражными” гиперповерхностями уровней. Методы переменной метрики (МПМ) для задач минимизации “овражных” функций характеризуются хорошей локальной скоростью сходимости, и при их реализации для седловых функций с овражными гиперповерхностями уровней ожидаются преимущества перед другими седловыми методами (см., например, [7], [11]) (хотя бы в случаях не самых сложных “оврагов” седловых функций).

Ввиду этого на основе идеи непрерывного "овражного" МПГ первого порядка с переменной метрикой (НМПГПМ) для задач минимизации, предложенного в работе [4], построен, авторами работы [4] и их учениками, ряд методов сначала для решения задач минимизации, затем равновесных. Например, в работе [5] исследован НМПГПМ второго порядка для решения "овражных" задач минимизации функции f(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaaaa@3944@ , отличающийся от метода первого порядка из работы [4] дифференциальным оператором второго порядка. Доказана сходимость этого метода, а также двух регуляризованных версий метода для решения неустойчивых задач минимизации. В [4], [5] использован оператор проектирования P Q G(x(t)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaWGrbaabaGaam4raiaaiIcacaWG4bGaaGikaiaadshacaaI PaGaaGykaaaaaaa@3D5B@  в переменной метрике G(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaaiI cacaWG4bGaaGykaaaa@3925@ , в гильбертовом пространстве H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaaaa@36C4@ . Метрика определена скалярным произведением G(x(t))y,y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGhbGaaGikaiaadIhacaaIOaGaamiDaiaaiMcacaaIPaGaamyEaiaa iYcacaWG5baacaGLOaGaayzkaaaaaa@3FBE@ ,   x,yH MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jbVlaadIhacaaISaGaamyEaiabgIGiolaadIeaaaa@3D56@ .

В работе [6] идея использования переменной метрики из [4] продолжена с дифференциального на итеративный метод минимизации функций с гиперповерхностями уровней “овражной структуры”, а именно, на предложенный в [6] проекционный обобщённый двухточечный двухэтапный экстраградиентный метод квазиньютоновский (ПОДЭМК) минимизации “овражных” функций f(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaaaa@3944@ , с оператором P Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGrbaabeaaaaa@37CE@  проектирования на выпуклое замкнутое множество Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaaaa@36CD@  в исходной метрике евклидова пространства E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaCa aaleqabaGaamOBaaaaaaa@37E1@ .

Мы исследуем в этой работе ИПМОСТ для “овражных” седловых функций φ(x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyDaiaaiMcaaaa@3BC6@  с операторами P Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGrbaabeaaaaa@37CE@  и P U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGvbaabeaaaaa@37D2@  проектирования на выпуклые замкнутые множества Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaaaa@36CD@  и U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaaaa@36D1@  в исходной метрике евклидовых пространств E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaCa aaleqabaGaamOBaaaaaaa@37E1@  и E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaCa aaleqabaGaamyBaaaaaaa@37E0@ . В работе [7] предложен и исследован ИПМОСТ для “овражной” седловой функции φ(x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyDaiaaiMcaaaa@3BC6@ , (x,u)Q×U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamyDaiaaiMcacqGHiiIZcaWGrbGaey41aqRaamyvaaaa @3F54@ , построенный на основе ПОДЭМК минимизации из [6], так называемый ПОДЭМК седловой (ПОДЭМКС), доказана его сходимость и линейная скорость сходимости для выпукло-вогнутых седловых функций, без предположения о сильной выпукло-вогнутости седловой функции.

В работах [8] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ [10] были исследованы другие итеративные методы решения седловых и равновесных задач; в [11] исследован непрерывный проекционный обобщённый экстраградиентный квазиньютоновский метод второго порядка для решения седловых задач; доказана его сходимость и экспоненциальная скорость сходимости для выпукло-вогнутых функций.

Целью предлагаемой работы является исследование ПОДЭМКС модифицированного (ПОДЭМКСМ), построенного на основе ПОДЭМКС из работы [7], для решения седловой задачи (1.1) со сложными функциями φ(x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyDaiaaiMcaaaa@3BC6@ , имеющими “овражные” гиперповерхности уровней. Для ПОДЭМКСМ доказана сходимость для выпукло-вогнутых функций с Липшицевыми частными градиентами и сверхлинейная, и квадратичная, скорости сходимости для дважды непрерывно дифференцируемых седловых функций, при дополнительных условиях.

Сформулируем математическую постановку седловой задачи. Cедловые задачи для конкретных математических моделей решаются при своих требованиях (к пространствам, множествам и функциям), выражающихся в постановке задачи и влияющих на метод её решения; мы здесь предполагаем следующие:

а) Пусть множества Q E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabgk OimlaadweadaahaaWcbeqaaiaad6gaaaaaaa@3AB3@ , U E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiabgk OimlaadweadaahaaWcbeqaaiaad2gaaaaaaa@3AB6@ , Q×U E n × E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabgE na0kaadwfacqGHckcZcaWGfbWaaWbaaSqabeaacaWGUbaaaOGaey41 aqRaamyramaaCaaaleqabaGaamyBaaaaaaa@41AE@  непустые выпуклые и замкнутые;

б) выпукло-вогнутая функция φ(x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyDaiaaiMcaaaa@3BC6@  с "овражными" гиперповерхностями уровней определена на множестве W=Q×U E n × E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaai2 dacaWGrbGaey41aqRaamyvaiabgkOimlaadweadaahaaWcbeqaaiaa d6gaaaGccqGHxdaTcaWGfbWaaWbaaSqabeaacaWGTbaaaaaa@4351@  выпукла по xQ E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaadgfacqGHckcZcaWGfbWaaWbaaSqabeaacaWGUbaaaaaa@3D34@ , и вогнута по uU E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadwfacqGHckcZcaWGfbWaaWbaaSqabeaacaWGTbaaaaaa@3D34@ , то есть для всех фиксированных uU MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI Giolaadwfaaaa@394F@  функция g(x)=φ(x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG4bGaaGykaiaai2dacqaHgpGAcaaIOaGaamiEaiaaiYcacaWG 1bGaaGykaaaa@3FDB@  выпукла на Q E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabgk OimlaadweadaahaaWcbeqaaiaad6gaaaaaaa@3AB3@ , а xQ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam iEaiabgIGiolaadgfaaaa@3A1E@  фиксированного функция h(u)=φ(x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaWG1bGaaGykaiaai2dacqaHgpGAcaaIOaGaamiEaiaaiYcacaWG 1bGaaGykaaaa@3FD9@  вогнута на U E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiabgI GiolaadweadaahaaWcbeqaaiaad2gaaaaaaa@3A3E@ ;

в) множество седловых точек ( x * , u * ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqabaGa aGOkaaaakiaaiMcaaaa@3BDF@  функции φ(x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyDaiaaiMcaaaa@3BC6@  на W E n × E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabgk OimlaadweadaahaaWcbeqaaiaad6gaaaGccqGHxdaTcaWGfbWaaWba aSqabeaacaWGTbaaaaaa@3EC3@  непусто, W * = Q * × U * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBa aaleaacaaIQaaabeaakiaai2dacaWGrbWaaSbaaSqaaiaaiQcaaeqa aOGaey41aqRaamyvamaaCaaaleqabaGaaGOkaaaakiabgcMi5kabgw Gigdaa@4160@ ;

г) частные градиенты функции φ(x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyDaiaaiMcaaaa@3BC6@  Липшицевы на Q×U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabgE na0kaadwfaaaa@39BE@ :

φ x (x,u) φ x (x',u)Lxx',uU,x,x'Q; φ u (x,u) φ u (x,u') L 0 uu',xQ,u,u'U, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjabgEGirlabeA8aQnaa BaaaleaacaWG4baabeaakiaaiIcacaWG4bGaaGilaiaadwhacaaIPa GaeyOeI0Iaey4bIeTaeqOXdO2aaSbaaSqaaiaadIhaaeqaaOGaaGik aiaadIhacaaINaGaaGilaiaadwhacaaIPaGae8xjIaLaeyizImQaam itaiab=vIiqjaadIhacqGHsislcaWG4bGaaG4jaiab=vIiqjaaiYca caaMf8UaamyDaiabgIGiolaadwfacaaISaGaaGjbVlaadIhacaaISa GaamiEaiaaiEcacqGHiiIZcaWGrbGaaG4oaaqaaiab=vIiqjabgEGi rlabeA8aQnaaBaaaleaacaWG1baabeaakiaaiIcacaWG4bGaaGilai aadwhacaaIPaGaeyOeI0Iaey4bIeTaeqOXdO2aaSbaaSqaaiaadwha aeqaaOGaaGikaiaadIhacaaISaGaamyDaiaaiEcacaaIPaGae8xjIa LaeyizImQaamitamaaCaaaleqabaGaaGimaaaakiab=vIiqjaadwha cqGHsislcaWG1bGaaG4jaiab=vIiqjaaiYcacaaMf8UaamiEaiabgI GiolaadgfacaaISaGaaGjbVlaadwhacaaISaGaamyDaiaaiEcacqGH iiIZcaWGvbGaaGilaaaaaaa@92A9@ (1.2)

 где L>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai6 dacaaIWaaaaa@384A@ , L 0 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaCa aaleqabaGaaGimaaaakiaai6dacaaIWaaaaa@393B@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  константы Липшица, φ x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaeq OXdO2aaSbaaSqaaiaadIhaaeqaaaaa@3A63@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  частный градиент, 2 φ xx MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIe9aaW baaSqabeaacaaIYaaaaOGaeqOXdO2aaSbaaSqaaiaadIhacaWG4baa beaaaaa@3C53@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  гессиан по первому аргументу, φ u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaeq OXdO2aaSbaaSqaaiaadwhaaeqaaaaa@3A60@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  частный градиент, 2 φ uu MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIe9aaW baaSqabeaacaaIYaaaaOGaeqOXdO2aaSbaaSqaaiaadwhacaWG1baa beaaaaa@3C4D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  гессиан по второму аргументу. Скаляры индексы xx MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaadI haaaa@37F1@  и uu MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaadw haaaa@37EB@  означают индексы для элементов матриц Гессе, соответственно, x i x j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGPbaabeaakiaadIhadaWgaaWcbaGaamOAaaqabaaaaa@3A30@ , i[1:n] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgI GiolaaiUfacaaIXaGaaGOoaiaad6gacaaIDbaaaa@3CA7@ , j[1:n] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabgI GiolaaiUfacaaIXaGaaGOoaiaad6gacaaIDbaaaa@3CA8@ , u i u j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGPbaabeaakiaadwhadaWgaaWcbaGaamOAaaqabaaaaa@3A2A@ , i[1:m] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgI GiolaaiUfacaaIXaGaaGOoaiaad2gacaaIDbaaaa@3CA6@ , j[1:m] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabgI GiolaaiUfacaaIXaGaaGOoaiaad2gacaaIDbaaaa@3CA7@ .

 В терминах оператора проектирования седловая точка ( x * , u * ) W * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqabaGa aGOkaaaakiaaiMcacqGHiiIZcaWGxbWaaSbaaSqaaiaaiQcaaeqaaa aa@3F1F@  задачи (1.1) характеризуется равенствами [3]

x * = P Q x * τ φ x ( x * , u * ) , u * = P U u * τ φ u ( x * , u * ) ,τ>0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOkaaaakiaai2dacaWGqbWaaSbaaSqaaiaadgfaaeqa aOWaamWaaeaacaWG4bWaaWbaaSqabeaacaaIQaaaaOGaeyOeI0Iaeq iXdqNaey4bIeTaeqOXdO2aaSbaaSqaaiaadIhaaeqaaOGaaGikaiaa dIhadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqaba GaaGOkaaaakiaaiMcaaiaawUfacaGLDbaacaaISaGaaGzbVlaadwha daahaaWcbeqaaiaaiQcaaaGccaaI9aGaamiuamaaBaaaleaacaWGvb aabeaakmaadmaabaGaamyDamaaCaaaleqabaGaaGOkaaaakiabgkHi Tiabes8a0jabgEGirlabeA8aQnaaBaaaleaacaWG1baabeaakiaaiI cacaWG4bWaaWbaaSqabeaacaaIQaaaaOGaaGilaiaadwhadaahaaWc beqaaiaaiQcaaaGccaaIPaaacaGLBbGaayzxaaGaaGilaiaaywW7cq aHepaDcaaI+aGaaGimaiaaiYcaaaa@696B@ (1.3)

 где P Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGrbaabeaaaaa@37CE@  и P U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGvbaabeaaaaa@37D2@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  операторы проектирования на множества Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaaaa@36CD@  и U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaaaa@36D1@ .

2.      Метод решения задачи

Схема решение задачи (1.1)-(1.3) ПОДЭМКСМ строится следующим образом:

пусть( x 0 , u 0 ),( x 1 , u 0 ),( x 1 , u 1 ) E n × E m начальныеточкитакие,что φ( x 0 , u 0 )>φ( x 1 , u 0 ),φ( x 1 , u 0 )<φ( x 1 , u 1 ); Iэтап: y k = x k x k1 , v k = u k u k1 , z k = P Q x k + α k y k , w k = P U u k + α k v k ; IIэтап: x k+1 = P Q z k β k A k 1 φ x ( z k , u k ) , u k+1 = P U w k + λ k B k 1 φ u ( x k+1 , w k ) ,k1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabyqaaa aabaGaaGjcVlaad+dbcaWGdrGaamyqeiaadkebcaWGmrGaaGjcVlaa ykW7caaMc8UaaGikaiaadIhadaahaaWcbeqaaiaaicdaaaGccaaISa GaamyDamaaCaaaleqabaGaaGimaaaakiaaiMcacaaISaGaaGikaiaa dIhadaahaaWcbeqaaiaaigdaaaGccaaISaGaamyDamaaCaaaleqaba GaaGimaaaakiaaiMcacaaISaGaaGikaiaadIhadaahaaWcbeqaaiaa igdaaaGccaaISaGaamyDamaaCaaaleqabaGaaGymaaaakiaaiMcacq GHiiIZcaWGfbWaaWbaaSqabeaacaWGUbaaaOGaey41aqRaamyramaa CaaaleqabaGaamyBaaaakiabgkHiTiaaysW7caaMi8Uaamypeiaadc dbcaWGhrGaamimeiaadUdbcaWGmrGaamypeiaadUebcaWG1qGaaGjb VlaadkebcaWG+qGaam4reiaadQdbcaWG4qGaaGjbVlaadkebcaWGWq GaamOoeiaadIdbcaWG1qGaaGilaiaaysW7caWGhrGaamOqeiaad6db caaMi8oabaGaeqOXdOMaaGikaiaadIhadaahaaWcbeqaaiaaicdaaa GccaaISaGaamyDamaaCaaaleqabaGaaGimaaaakiaaiMcacaaI+aGa eqOXdOMaaGikaiaadIhadaahaaWcbeqaaiaaigdaaaGccaaISaGaam yDamaaCaaaleqabaGaaGimaaaakiaaiMcacaaISaGaaGzbVlabeA8a QjaaiIcacaWG4bWaaWbaaSqabeaacaaIXaaaaOGaaGilaiaadwhada ahaaWcbeqaaiaaicdaaaGccaaIPaGaaGipaiabeA8aQjaaiIcacaWG 4bWaaWbaaSqabeaacaaIXaaaaOGaaGilaiaadwhadaahaaWcbeqaai aaigdaaaGccaaIPaGaaG4oaaqaaiaabMeacaaMc8UaaGPaVlaab2eb caqGcrGaaeimeiaab+dbcaqG6aGaaGzbVlaadMhadaahaaWcbeqaai aadUgaaaGccaaI9aGaamiEamaaCaaaleqabaGaam4AaaaakiabgkHi TiaadIhadaahaaWcbeqaaiaadUgacqGHsislcaaIXaaaaOGaaGilai aaywW7caWG2bWaaWbaaSqabeaacaWGRbaaaOGaaGypaiaadwhadaah aaWcbeqaaiaadUgaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaWGRb GaeyOeI0IaaGymaaaakiaaiYcaaeaacaWG6bWaaWbaaSqabeaacaWG RbaaaOGaaGypaiaadcfadaWgaaWcbaGaamyuaaqabaGcdaqadaqaai aadIhadaahaaWcbeqaaiaadUgaaaGccqGHRaWkcqaHXoqydaWgaaWc baGaam4AaaqabaGccaWG5bWaaWbaaSqabeaacaWGRbaaaaGccaGLOa GaayzkaaGaaGilaiaaywW7caWG3bWaaWbaaSqabeaacaWGRbaaaOGa aGypaiaadcfadaWgaaWcbaGaamyvaaqabaGcdaqadaqaaiaadwhada ahaaWcbeqaaiaadUgaaaGccqGHRaWkcqaHXoqydaWgaaWcbaGaam4A aaqabaGccaWG2bWaaWbaaSqabeaacaWGRbaaaaGccaGLOaGaayzkaa GaaG4oaaqaaiaabMeacaqGjbGaaGPaVlaaykW7caqGnrGaaeOqeiaa bcdbcaqG=qGaaeOoaiaaywW7caWG4bWaaWbaaSqabeaacaWGRbGaey 4kaSIaaGymaaaakiaai2dacaWGqbWaaSbaaSqaaiaadgfaaeqaaOWa aeWaaeaacaWG6bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaeqOSdi 2aaSbaaSqaaiaadUgaaeqaaOGaamyqamaaDaaaleaacaWGRbaabaGa eyOeI0IaaGymaaaakiabgEGirlabeA8aQnaaBaaaleaacaWG4baabe aakiaaiIcacaWG6bWaaWbaaSqabeaacaWGRbaaaOGaaGilaiaadwha daahaaWcbeqaaiaadUgaaaGccaaIPaaacaGLOaGaayzkaaGaaGilaa qaaiaadwhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaaGyp aiaadcfadaWgaaWcbaGaamyvaaqabaGcdaqadaqaaiaadEhadaahaa WcbeqaaiaadUgaaaGccqGHRaWkcqaH7oaBdaWgaaWcbaGaam4Aaaqa baGccaWGcbWaa0baaSqaaiaadUgaaeaacqGHsislcaaIXaaaaOGaey 4bIeTaeqOXdO2aaSbaaSqaaiaadwhaaeqaaOGaaGikaiaadIhadaah aaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaaGilaiaadEhadaahaa WcbeqaaiaadUgaaaGccaaIPaaacaGLOaGaayzkaaGaaGilaiaaywW7 caWGRbGaeyyzImRaaGymaiaaiYcaaaaaaa@2511@ (2.1)

 где α k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadUgaaeqaaaaa@38B2@ , β k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaadUgaaeqaaaaa@38B4@ , λ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaadUgaaeqaaaaa@38C7@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  положительные параметры метода; при каждом фиксированном x E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaadweadaahaaWcbeqaaiaad6gaaaaaaa@3A62@   A(x): E n E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGykaiaaiQdacaaMe8UaamyramaaCaaaleqabaGaamOB aaaakiabgkziUkaadweadaahaaWcbeqaaiaad6gaaaaaaa@413B@  и u E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jcVlaadwhacqGHiiIZcaWGfbWaaWbaaSqabeaacaWGTbaaaaaa@3CBF@  фиксированном B(u): E m E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaaiI cacaWG1bGaaGykaiaaiQdacaaMe8UaamyramaaCaaaleqabaGaamyB aaaakiabgkziUkaadweadaahaaWcbeqaaiaad2gaaaaaaa@4137@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  положительно определённые самосопряженные операторы, изменяющие метрику пространства.

Оператор A(x)x E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGykaiaaysW7cqGHaiIicaaMe8UaamiEaiabgIGiolaa dweadaahaaWcbeqaaiaad6gaaaaaaa@4174@  (в (2.1) A k =A( z k ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGRbaabeaakiaai2dacaWGbbGaaGikaiaadQhadaahaaWc beqaaiaadUgaaaGccaaIPaaaaa@3CFB@  ), и оператор B(u)u E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaaiI cacaWG1bGaaGykaiaaysW7cqGHaiIicaaMe8UaamyDaiabgIGiolaa dweadaahaaWcbeqaaiaad2gaaaaaaa@416E@  (в (2.1) B k =B( w k ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGRbaabeaakiaai2dacaWGcbGaaGikaiaadEhadaahaaWc beqaaiaadUgaaaGccaaIPaaaaa@3CFA@  ) таковы, что:

                 mv 2 (A(x)v,v)Mv 2 ,0<mM,v,xQ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaebbfv 3ySLgzGueE0jxyaGqbaiab=vIiqjaadAhacqWFLicudaahaaWcbeqa aiaaikdaaaGccqGHKjYOcaaIOaGaamyqaiaaiIcacaWG4bGaaGykai aadAhacaaISaGaamODaiaaiMcacqGHKjYOcaWGnbGae8xjIaLaamOD aiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiYcacaaMf8UaaGimai aaiYdacaWGTbGaeyizImQaamytaiaaiYcacaaMe8UaamODaiaaiYca caWG4bGaeyicI4SaamyuaiaaiYcaaaa@5E84@ (2.2)

pv 2 (B(u)v,v)Pv 2 ,0<pP,v,uU. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaebbfv 3ySLgzGueE0jxyaGqbaiab=vIiqjaadAhacqWFLicudaahaaWcbeqa aiaaikdaaaGccqGHKjYOcaaIOaGaamOqaiaaiIcacaWG1bGaaGykai aadAhacaaISaGaamODaiaaiMcacqGHKjYOcaWGqbGae8xjIaLaamOD aiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiYcacaaMf8UaaGimai aaiYdacaWGWbGaeyizImQaamiuaiaaiYcacaaMe8UaamODaiaaiYca caWG1bGaeyicI4Saamyvaiaai6caaaa@5E91@ (2.3)

 Обратные операторы таковы, что

v 2 /M( A 1 (x)v,v)v 2 /m,v,xQ; v 2 /P( B 1 (u)v,v)v 2 /p,v,uU. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadAhacqWFLicudaah aaWcbeqaaiaaikdaaaGccaaIVaGaamytaiabgsMiJkaaiIcacaWGbb WaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGikaiaadIhacaaIPaGa amODaiaaiYcacaWG2bGaaGykaiabgsMiJkab=vIiqjaadAhacqWFLi cudaahaaWcbeqaaiaaikdaaaGccaaIVaGaamyBaiaaiYcacaaMf8Ua amODaiaaiYcacaWG4bGaeyicI4SaamyuaiaaiUdaaeaacqWFLicuca WG2bGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaG4laiaadcfacqGH KjYOcaaIOaGaamOqamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaaiI cacaWG1bGaaGykaiaadAhacaaISaGaamODaiaaiMcacqGHKjYOcqWF LicucaWG2bGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaG4laiaadc hacaaISaGaaGzbVlaadAhacaaISaGaamyDaiabgIGiolaadwfacaaI Uaaaaaaa@7AC2@ (2.4)

 Для ПОДЭМКС (2.1) характеристики (1.3) седловой точки запишутся в виде

x * = P Q x * β A 1 ( x * ) φ x ( x * , u * ) ,β>0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOkaaaakiaai2dacaWGqbWaaSbaaSqaaiaadgfaaeqa aOWaamWaaeaacaWG4bWaaWbaaSqabeaacaaIQaaaaOGaeyOeI0Iaeq OSdiMaamyqamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaaiIcacaWG 4bWaaWbaaSqabeaacaaIQaaaaOGaaGykaiabgEGirlabeA8aQnaaBa aaleaacaWG4baabeaakiaaiIcacaWG4bWaaWbaaSqabeaacaaIQaaa aOGaaGilaiaadwhadaahaaWcbeqaaiaaiQcaaaGccaaIPaaacaGLBb GaayzxaaGaaGilaiaaywW7cqaHYoGycaaI+aGaaGimaiaaiYcaaaa@575C@ (2.5)

u * = P U u * +λ B 1 ( u * ) φ u ( x * , u * ) ,λ>0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaaGOkaaaakiaai2dacaWGqbWaaSbaaSqaaiaadwfaaeqa aOWaamWaaeaacaWG1bWaaWbaaSqabeaacaaIQaaaaOGaey4kaSIaeq 4UdWMaamOqamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaaiIcacaWG 1bWaaWbaaSqabeaacaaIQaaaaOGaaGykaiabgEGirlabeA8aQnaaBa aaleaacaWG1baabeaakiaaiIcacaWG4bWaaWbaaSqabeaacaaIQaaa aOGaaGilaiaadwhadaahaaWcbeqaaiaaiQcaaaGccaaIPaaacaGLBb GaayzxaaGaaGilaiaaywW7cqaH7oaBcaaI+aGaaGimaiaai6caaaa@5772@ (2.6)

 Замечание 2.1. Отметим, что критерии проекций по первой и второй переменным соответственно будут по евклидовой исходной метрике (см. [13], с. 189):

(wv,zw)0,zQ,(wv,uw)0,uU, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadE hacqGHsislcaWG2bGaaGilaiaadQhacqGHsislcaWG3bGaaGykaiab gwMiZkaaicdacaaISaGaaGjbVlaaykW7caWG6bGaeyicI4Saamyuai aaiYcacaaMf8UaaGikaiaadEhacqGHsislcaWG2bGaaGilaiaadwha cqGHsislcaWG3bGaaGykaiabgwMiZkaaicdacaaISaGaaGjbVlaayk W7caWG1bGaeyicI4SaamyvaiaaiYcaaaa@5C07@ (2.7)

 а при использовании в (2.1) операторов проектирования в новой метрике критериями проекций были бы неравенства

(A(z)(wv),xw)0,xQ,(B(z)(wv),uw)0,uU, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadg eacaaIOaGaamOEaiaaiMcacaaIOaGaam4DaiabgkHiTiaadAhacaaI PaGaaGilaiaadIhacqGHsislcaWG3bGaaGykaiabgwMiZkaaicdaca aISaGaaGPaVlaaykW7caWG4bGaeyicI4SaamyuaiaaiYcacaaMf8Ua aGikaiaadkeacaaIOaGaamOEaiaaiMcacaaIOaGaam4DaiabgkHiTi aadAhacaaIPaGaaGilaiaadwhacqGHsislcaWG3bGaaGykaiabgwMi ZkaaicdacaaISaGaaGPaVlaaykW7caWG1bGaeyicI4SaamyvaiaaiY caaaa@651E@

но здесь мы пользуемся (2.7), ибо в (2.1) операторы проектирования в исходной метрике.

3.      Вспомогательные утверждения

Неравенства в леммах дополняют необходимый для доказательства сходимости и скорости сходимости метода математический аппарат.

Лемма 3.1. Пусть u k U E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jbVlaadwhadaahaaWcbeqaaiaadUgaaaGccqGHiiIZcaWGvbGaeyOG IWSaamyramaaCaaaleqabaGaamyBaaaaaaa@40B8@  из (2.1) выпуклая функция g(x) C 2,1 (Q) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG4bGaaGykaiabgIGiolaadoeadaahaaWcbeqaaiaaikdacaaI SaGaaGymaaaakiaaiIcacaWGrbGaaGykaaaa@4030@  удовлетворяет соотношениям

g(x)= A 1 (x) φ x (x, u k ),g(w)g(v)Kwv,w,vQ,K= L m . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaam 4zaiaaiIcacaWG4bGaaGykaiaai2dacaWGbbWaaWbaaSqabeaacqGH sislcaaIXaaaaOGaaGikaiaadIhacaaIPaGaey4bIeTaeqOXdO2aaS baaSqaaiaadIhaaeqaaOGaaGikaiaadIhacaaISaGaamyDamaaCaaa leqabaGaam4AaaaakiaaiMcacaaISaqeeuuDJXwAKbsr4rNCHbacfa Gae8xjIaLaey4bIeTaam4zaiaaiIcacaWG3bGaaGykaiabgkHiTiab gEGirlaadEgacaaIOaGaamODaiaaiMcacqWFLicucqGHKjYOcaWGlb Gae8xjIaLaam4DaiabgkHiTiaadAhacqWFLicucaaISaGaaGzbVlaa dEhacaaISaGaamODaiabgIGiolaadgfacaaISaGaaGjbVlaadUeaca aI9aWaaSaaaeaacaWGmbaabaGaamyBaaaacaaIUaaaaa@71B5@

Тогда

(g( x * ),z x * )0,zQ, x * Q * . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabgE GirlaadEgacaaIOaGaamiEamaaCaaaleqabaGaaGOkaaaakiaaiMca caaISaGaamOEaiabgkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGcca aIPaGaeyyzImRaaGimaiaaiYcacaaMf8UaamOEaiabgIGiolaadgfa caaISaGaaGjbVlaadIhadaahaaWcbeqaaiaaiQcaaaGccqGHiiIZca WGrbWaaSbaaSqaaiaaiQcaaeqaaOGaaGOlaaaa@51E9@ (3.1)

Доказательство дано для работы [7].

Лемма 3.2. Пусть x k Q E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jbVlaadIhadaahaaWcbeqaaiaadUgaaaGccqGHiiIZcaWGrbGaeyOG IWSaamyramaaCaaaleqabaGaamOBaaaaaaa@40B8@  из (2.1) вогнутая функция h(u) C 2,1 (U) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaWG1bGaaGykaiabgIGiolaadoeadaahaaWcbeqaaiaaikdacaaI SaGaaGymaaaakiaaiIcacaWGvbGaaGykaaaa@4032@  удовлетворяет соотношениям

h(u)= B 1 (u) φ u ( x k ,u),h(u)h(v)Ruv,u,vU,R= L 0 2m . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaam iAaiaaiIcacaWG1bGaaGykaiaai2dacaWGcbWaaWbaaSqabeaacqGH sislcaaIXaaaaOGaaGikaiaadwhacaaIPaGaey4bIeTaeqOXdO2aaS baaSqaaiaadwhaaeqaaOGaaGikaiaadIhadaahaaWcbeqaaiaadUga aaGccaaISaGaamyDaiaaiMcacaaISaqeeuuDJXwAKbsr4rNCHbacfa Gae8xjIaLaey4bIeTaamiAaiaaiIcacaWG1bGaaGykaiabgkHiTiab gEGirlaadIgacaaIOaGaamODaiaaiMcacqWFLicucqGHKjYOcaWGsb Gae8xjIaLaamyDaiabgkHiTiaadAhacqWFLicucaaISaGaaGzbVlaa dwhacaaISaGaamODaiabgIGiolaadwfacaaISaGaaGjbVlaadkfaca aI9aWaaSaaaeaacaWGmbWaaWbaaSqabeaacaaIWaaaaaGcbaGaaGOm aiaad2gaaaGaaGOlaaaa@7369@

Тогда

(h( u * ), u * w)0,wU, u * U * . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabgE GirlaadIgacaaIOaGaamyDamaaCaaaleqabaGaaGOkaaaakiaaiMca caaISaGaamyDamaaCaaaleqabaGaaGOkaaaakiabgkHiTiaadEhaca aIPaGaeyyzImRaaGimaiaaiYcacaaMf8Uaam4DaiabgIGiolaadwfa caaISaGaaGjbVlaadwhadaahaaWcbeqaaiaaiQcaaaGccqGHiiIZca WGvbWaaWbaaSqabeaacaaIQaaaaOGaaGOlaaaa@51E4@ (3.2)

Доказательство дано для работы [7].

Лемма 3.3. Для всякой тройки точек u,v,w E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiY cacaWG2bGaaGilaiaadEhacqGHiiIZcaWGfbWaaWbaaSqabeaacaWG Ubaaaaaa@3DC2@  (или u,v,w E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiY cacaWG2bGaaGilaiaadEhacqGHiiIZcaWGfbWaaWbaaSqabeaacaWG Tbaaaaaa@3DC1@  ) справедливо неравенство

(1ε)uv 2 +(1 ε 1 )vw 2 uw 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsislcqaH1oqzcaaIPaqeeuuDJXwAKbsr4rNCHbacfaGae8xj IaLaamyDaiabgkHiTiaadAhacqWFLicudaahaaWcbeqaaiaaikdaaa GccqGHRaWkcaaIOaGaaGymaiabgkHiTiabew7aLnaaCaaaleqabaGa eyOeI0IaaGymaaaakiaaiMcacqWFLicucaWG2bGaeyOeI0Iaam4Dai ab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgsMiJkab=vIiqjaadwha cqGHsislcaWG3bGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyizIm kaaa@5C50@

(1+ε)uv 2 +(1+ ε 1 )vw 2 ,ε>0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG ikaiaaigdacqGHRaWkcqaH1oqzcaaIPaqeeuuDJXwAKbsr4rNCHbac faGae8xjIaLaamyDaiabgkHiTiaadAhacqWFLicudaahaaWcbeqaai aaikdaaaGccqGHRaWkcaaIOaGaaGymaiabgUcaRiabew7aLnaaCaaa leqabaGaeyOeI0IaaGymaaaakiaaiMcacqWFLicucaWG2bGaeyOeI0 Iaam4Daiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiYcacaaMe8Ua eqyTduMaaGOpaiaaicdacaaIUaaaaa@5A9B@ (3.3)

Доказательство приведено, например, в работе [6].

4.      Сходимость ПОДЭМКСМ

Теорема 4.1. Пусть выполнены: предположения а) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ г) из п. 1 о задаче (1.1) и функции φ(x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyDaiaaiMcaaaa@3BC6@ ; неравенства (2.2) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  (2.4); параметры константы ПОДЭМКСМ (2.1) таковы:

0<α<1/3,0<β<2(13α)m/[L(1α)], 0<λ<4p(13α)/[ L 0 (1α)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaaicdacaaI8aGaeqySdeMaaGipaiaaigdacaaIVaGaaG4maiaa iYcacaaIWaGaaGipaiabek7aIjaaiYdacaaIYaGaaGikaiaaigdacq GHsislcaaIZaGaeqySdeMaaGykaiaad2gacaaIVaGaaG4waiaadYea caaIOaGaaGymaiabgkHiTiabeg7aHjaaiMcacaaIDbGaaGilaaqaai aaicdacaaI8aGaeq4UdWMaaGipaiaaisdacaWGWbGaaGikaiaaigda cqGHsislcaaIZaGaeqySdeMaaGykaiaai+cacaaIBbGaamitamaaCa aaleqabaGaaGimaaaakiaaiIcacaaIXaGaeyOeI0IaeqySdeMaaGyk aiaai2facaaIUaaaaaaa@6547@ (4.1)

Тогда процесс (2.1), (4.1) по норме пространства E n × E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaCa aaleqabaGaamOBaaaakiabgEna0kaadweadaahaaWcbeqaaiaad2ga aaaaaa@3BEB@  сходится к решению ( x * , u * ) W * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqabaGa aGOkaaaakiaaiMcacqGHiiIZcaWGxbWaaSbaaSqaaiaaiQcaaeqaaa aa@3F1F@  задачи (1.1), то есть x k x * Q * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaam4AaaaakiabgkziUkaadIhadaahaaWcbeqaaiaaiQca aaGccqGHiiIZcaWGrbWaaSbaaSqaaiaaiQcaaeqaaaaa@3F2A@ , u k u * U * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaam4AaaaakiabgkziUkaadwhadaahaaWcbeqaaiaaiQca aaGccqGHiiIZcaWGvbWaaWbaaSqabeaacaaIQaaaaaaa@3F29@  при k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@ .

Доказательство. Представим каждое уравнение из (2.1), пользуясь (2.7), в виде вариационного неравенства, тогда этот итерационный процесс запишется в форме:

z k x k α k y k ,v z k 0,vQ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG6bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamiEamaaCaaaleqa baGaam4AaaaakiabgkHiTiabeg7aHnaaBaaaleaacaWGRbaabeaaki aadMhadaahaaWcbeqaaiaadUgaaaGccaaISaGaamODaiabgkHiTiaa dQhadaahaaWcbeqaaiaadUgaaaaakiaawIcacaGLPaaacqGHLjYSca aIWaGaaGilaiaaysW7caWG2bGaeyicI4SaamyuaiaaiYcaaaa@5020@ (4.2)

x k+1 z k + β k A k 1 φ x ( z k , u k ),v x k+1 0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaa dQhadaahaaWcbeqaaiaadUgaaaGccqGHRaWkcqaHYoGydaWgaaWcba Gaam4AaaqabaGccaWGbbWaa0baaSqaaiaadUgaaeaacqGHsislcaaI XaaaaOGaey4bIeTaeqOXdO2aaSbaaSqaaiaadIhaaeqaaOGaaGikai aadQhadaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaaCaaaleqa baGaam4AaaaakiaaiMcacaaISaGaamODaiabgkHiTiaadIhadaahaa WcbeqaaiaadUgacqGHRaWkcaaIXaaaaaGccaGLOaGaayzkaaGaeyyz ImRaaGimaiaaiYcaaaa@59FF@ (4.3)

w k u k α k v k ,u w k 0,uU, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG3bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamyDamaaCaaaleqa baGaam4AaaaakiabgkHiTiabeg7aHnaaBaaaleaacaWGRbaabeaaki aadAhadaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDaiabgkHiTiaa dEhadaahaaWcbeqaaiaadUgaaaaakiaawIcacaGLPaaacqGHLjYSca aIWaGaaGilaiaaysW7caWG1bGaeyicI4SaamyvaiaaiYcaaaa@5016@ (4.4)

u k+1 w k λ k B k 1 φ u ( x k+1 , w k ),u u k+1 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaa dEhadaahaaWcbeqaaiaadUgaaaGccqGHsislcqaH7oaBdaWgaaWcba Gaam4AaaqabaGccaWGcbWaa0baaSqaaiaadUgaaeaacqGHsislcaaI XaaaaOGaey4bIeTaeqOXdO2aaSbaaSqaaiaadwhaaeqaaOGaaGikai aadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaaGilaiaa dEhadaahaaWcbeqaaiaadUgaaaGccaaIPaGaaGilaiaadwhacqGHsi slcaWG1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaaaOGaayjk aiaawMcaaiabgwMiZkaaicdacaaIUaaaaa@5BB0@ (4.5)

 Далее почти везде обозначим α k =α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadUgaaeqaaOGaaGypaiabeg7aHbaa@3B22@ , β k =β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaadUgaaeqaaOGaaGypaiabek7aIbaa@3B26@ , λ k =λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaadUgaaeqaaOGaaGypaiabeU7aSbaa@3B4C@ .

Здесь сначала преобразуем (4.2), (4.3), пользуясь свойствами скалярного произведения, формулой (2.1) и вспомогательными неравенствами.

Пользуясь неравенством Коши-Буняковского и нерасширяющим свойством оператора проектирования ([13], с. 190), из (4.2) имеем:

z k x k 2 α( y k , z k x k )α y k z k x k = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamOEamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadIhadaahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbe qaaiaaikdaaaGccqGHKjYOcqaHXoqycaaIOaGaamyEamaaCaaaleqa baGaam4AaaaakiaaiYcacaWG6bWaaWbaaSqabeaacaWGRbaaaOGaey OeI0IaamiEamaaCaaaleqabaGaam4AaaaakiaaiMcacqGHKjYOcqaH XoqycqWFLicucaWG5bWaaWbaaSqabeaacaWGRbaaaOGae8xjIaLae8 xjIaLaamOEamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadIhadaah aaWcbeqaaiaadUgaaaGccqWFLicucaaI9aaaaa@5FA7@

=α y k P Q ( x k +α y k ) P Q ( x k ) α 2 y k 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabeg 7aHfbbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadMhadaahaaWcbeqa aiaadUgaaaGccqWFLicucqWFLicucaWGqbWaaSbaaSqaaiaadgfaae qaaOGaaGikaiaadIhadaahaaWcbeqaaiaadUgaaaGccqGHRaWkcqaH XoqycaWG5bWaaWbaaSqabeaacaWGRbaaaOGaaGykaiabgkHiTiaadc fadaWgaaWcbaGaamyuaaqabaGccaaIOaGaamiEamaaCaaaleqabaGa am4AaaaakiaaiMcacqWFLicucqGHKjYOcqaHXoqydaahaaWcbeqaai aaikdaaaGccqWFLicucaWG5bWaaWbaaSqabeaacaWGRbaaaOGae8xj Ia1aaWbaaSqabeaacaaIYaaaaOGaaGOlaaaa@5E44@ (4.6)

 Первое слагаемое в неравенстве, следующем из (4.3) с учётом леммы 3.1,

x k+1 x * , x k+1 z k β(g( z k ), x * x k+1 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaa dIhadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamiEamaaCaaaleqaba Gaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG6bWaaWbaaSqabeaa caWGRbaaaaGccaGLOaGaayzkaaGaeyizImQaeqOSdiMaaGikaiabgE GirlaadEgacaaIOaGaamOEamaaCaaaleqabaGaam4AaaaakiaaiMca caaISaGaamiEamaaCaaaleqabaGaaGOkaaaakiabgkHiTiaadIhada ahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaaGykaiaaiYcaaaa@585A@  (4.7)

 где g( z k )=[A( z k )] 1 φ x ( z k , u k ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaam 4zaiaaiIcacaWG6bWaaWbaaSqabeaacaWGRbaaaOGaaGykaiaai2da caaIBbGaamyqaiaaiIcacaWG6bWaaWbaaSqabeaacaWGRbaaaOGaaG ykaiaai2fadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGHhis0cqaH gpGAdaWgaaWcbaGaamiEaaqabaGccaaIOaGaamOEamaaCaaaleqaba Gaam4AaaaakiaaiYcacaWG1bWaaWbaaSqabeaacaWGRbaaaOGaaGyk aaaa@4F8F@ , z k Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaCa aaleqabaGaam4AaaaakiabgIGiolaadgfaaaa@3A77@ , u k U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaam4AaaaakiabgIGiolaadwfaaaa@3A76@ , преобразуем с помощью тождества

uw 2 =uv 2 +2(uv,vw)+vw 2 v,u,w E n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDaiabgkHiTiaadEhacqWFLicudaah aaWcbeqaaiaaikdaaaGccaaI9aGae8xjIaLaamyDaiabgkHiTiaadA hacqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaaGik aiaadwhacqGHsislcaWG2bGaaGilaiaadAhacqGHsislcaWG3bGaaG ykaiabgUcaRiab=vIiqjaadAhacqGHsislcaWG3bGae8xjIa1aaWba aSqabeaacaaIYaaaaOGaaGzbVlabgcGiIiaaysW7caWG2bGaaGilai aadwhacaaISaGaam4DaiabgIGiolaadweadaahaaWcbeqaaiaad6ga aaGccaaIUaaaaa@645D@  (4.8)

 Получим

x * x k+1 , x k+1 z k = x * z k 2 x * x k+1 2 x k+1 z k 2 /2. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaae WaaeaacaWG4bWaaWbaaSqabeaacaaIQaaaaOGaeyOeI0IaamiEamaa CaaaleqabaGaam4AaiabgUcaRiaaigdaaaGccaaISaGaamiEamaaCa aaleqabaGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG6bWaaWba aSqabeaacaWGRbaaaaGccaGLOaGaayzkaaGaaGypaiabgkHiTmaabm aabaqeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqa baGaaGOkaaaakiabgkHiTiaadQhadaahaaWcbeqaaiaadUgaaaGccq WFLicudaahaaWcbeqaaiaaikdaaaGccqGHsislcqWFLicucaWG4bWa aWbaaSqabeaacaaIQaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaam 4AaiabgUcaRiaaigdaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGc cqGHsislcqWFLicucaWG4bWaaWbaaSqabeaacaWGRbGaey4kaSIaaG ymaaaakiabgkHiTiaadQhadaahaaWcbeqaaiaadUgaaaGccqWFLicu daahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaaIVaGaaGOmai aai6caaaa@6E53@

 С учётом этого преобразования из (4.7) следует неравенство

x * x k+1 2 + x k+1 z k 2 x * z k 2 2β(g( z k ), x * x k+1 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaaGOkaaaakiab gkHiTiaadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xjIaLaamiEamaa CaaaleqabaGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG6bWaaW baaSqabeaacaWGRbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGa eyOeI0Iae8xjIaLaamiEamaaCaaaleqabaGaaGOkaaaakiabgkHiTi aadQhadaahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaa ikdaaaGccqGHKjYOcaaIYaGaeqOSdiMaaGikaiabgEGirlaadEgaca aIOaGaamOEamaaCaaaleqabaGaam4AaaaakiaaiMcacaaISaGaamiE amaaCaaaleqabaGaaGOkaaaakiabgkHiTiaadIhadaahaaWcbeqaai aadUgacqGHRaWkcaaIXaaaaOGaaGykaiaai6caaaa@6BC0@ (4.9)

 В (4.9) преобразуем третье слагаемое, пользуясь нерастягивающим свойством оператора проектирования,

z k x * 2 = P Q ( x k +α y k ) P Q ( x * ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamOEamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbe qaaiaaikdaaaGccaaI9aGae8xjIaLaamiuamaaBaaaleaacaWGrbaa beaakiaaiIcacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaey4kaSIaeq ySdeMaamyEamaaCaaaleqabaGaam4AaaaakiaaiMcacqGHsislcaWG qbWaaSbaaSqaaiaadgfaaeqaaOGaaGikaiaadIhadaahaaWcbeqaai aaiQcaaaGccaaIPaGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyiz Imkaaa@588B@

x k +α y k x * 2 = x k x * 2 +2α( x k x * , y k )+ α 2 y k 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImAeeu uDJXwAKbsr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4A aaaakiabgUcaRiabeg7aHjaadMhadaahaaWcbeqaaiaadUgaaaGccq GHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqa beaacaaIYaaaaOGaaGypaiab=vIiqjaadIhadaahaaWcbeqaaiaadU gaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa1a aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiabeg7aHjaaiIcaca WG4bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamiEamaaCaaaleqa baGaaGOkaaaakiaaiYcacaWG5bWaaWbaaSqabeaacaWGRbaaaOGaaG ykaiabgUcaRiabeg7aHnaaCaaaleqabaGaaGOmaaaakiab=vIiqjaa dMhadaahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaik daaaGccaaISaaaaa@67ED@

 и здесь преобразуем среднее слагаемое с помощью (4.8),

2α( x k x * , y k )=α x k x * 2 + y k 2 x k1 x * 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabeg 7aHjaaiIcacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamiE amaaCaaaleqabaGaaGOkaaaakiaaiYcacaWG5bWaaWbaaSqabeaaca WGRbaaaOGaaGykaiaai2dacqaHXoqydaqadaqaaebbfv3ySLgzGueE 0jxyaGqbaiab=vIiqjaadIhadaahaaWcbeqaaiaadUgaaaGccqGHsi slcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaa caaIYaaaaOGaey4kaSIae8xjIaLaamyEamaaCaaaleqabaGaam4Aaa aakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgkHiTiab=vIiqjaa dIhadaahaaWcbeqaaiaadUgacqGHsislcaaIXaaaaOGaeyOeI0Iaam iEamaaCaaaleqabaGaaGOkaaaakiab=vIiqnaaCaaaleqabaGaaGOm aaaaaOGaayjkaiaawMcaaiaaiYcaaaa@63DB@

 тогда

|| z k x * || 2 (1+α)|| x k x * || 2 +α||x k1 x * 2 (α+ α 2 )||y k 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG iFaiaaiYhacaWG6bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamiE amaaCaaaleqabaGaaGOkaaaakiaaiYhacaaI8bWaaWbaaSqabeaaca aIYaaaaOGaeyyzImRaeyOeI0IaaGikaiaaigdacqGHRaWkcqaHXoqy caaIPaGaaGiFaiaaiYhacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaey OeI0IaamiEamaaCaaaleqabaGaaGOkaaaakiaaiYhacaaI8bWaaWba aSqabeaacaaIYaaaaOGaey4kaSIaeqySdeMaaGiFaiaaiYhacaaMi8 UaaGjbVlaadIhacaaMi8+aaWbaaSqabeaacaWGRbGaeyOeI0IaaGym aaaakiabgkHiTiaayIW7caaMe8UaamiEaiaayIW7daahaaWcbeqaai aaiQcaaaqeeuuDJXwAKbsr4rNCHbacfaGccqWFLicudaahaaWcbeqa aiaaikdaaaGccqGHsislcaaIOaGaeqySdeMaey4kaSIaeqySde2aaW baaSqabeaacaaIYaaaaOGaaGykaiaaiYhacaaI8bGaaGjcVlaaysW7 caWG5bGaaGjcVpaaCaaaleqabaGaam4Aaaaakiab=vIiqnaaCaaale qabaGaaGOmaaaakiaai6caaaa@8085@

 Правую часть (4.9) сложим с неравенством (3.1) из леммы 3.1 при z= x k+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiaai2 dacaWG4bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaaaaa@3B74@ , умножив на 2β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabek 7aIbaa@3854@  и, c учётом константы Липшица K= L m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaai2 dadaWcaaqaaiaadYeaaeaacaWGTbaaaaaa@3961@  для градиента гладкой выпуклой функции g(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG4bGaaGykaaaa@3945@  из леммы 1, применим неравенство для таких функций ([12], гл. 1, c. 25)

2β g(z k )g( x * ), x * x k+1 2β K 4 z k x k+1 2 = Lβ 2m z k x k+1 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabek 7aInaabmaabaGaey4bIeTaam4zaiaaiIcacaaMi8UaaGjbVlaadQha caaMi8+aaWbaaSqabeaacaWGRbaaaOGaaGykaiabgkHiTiabgEGirl aadEgacaaIOaGaamiEamaaCaaaleqabaGaaGOkaaaakiaaiMcacaaI SaGaamiEamaaCaaaleqabaGaaGOkaaaakiabgkHiTiaadIhadaahaa WcbeqaaiaadUgacqGHRaWkcaaIXaaaaaGccaGLOaGaayzkaaGaeyiz ImQaaGOmaiabek7aInaalaaabaGaam4saaqaaiaaisdaaaqeeuuDJX wAKbsr4rNCHbacfaGae8xjIaLaamOEamaaCaaaleqabaGaam4Aaaaa kiabgkHiTiaadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaO Gae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaGypamaalaaabaGaamit aiabek7aIbqaaiaaikdacaWGTbaaaiab=vIiqjaadQhadaahaaWcbe qaaiaadUgaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaWGRbGaey4k aSIaaGymaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiYcaaa a@7678@

  z, x k+1 Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiaaiY cacaWG4bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgIGi olaadgfaaaa@3DC7@ , x * Q * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOkaaaakiabgIGiolaadgfadaWgaaWcbaGaaGOkaaqa baaaaa@3B19@ . Подставив эти оценки слагаемых, из (4.9) получим,

x k+1 x * 2 +(1 Lβ 2m ) z k x k+1 2 +α x k1 x * 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGikaiaaigdacqGH sisldaWcaaqaaiaadYeacqaHYoGyaeaacaaIYaGaamyBaaaacaaIPa Gae8xjIaLaamOEamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadIha daahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGae8xjIa1aaWbaaS qabeaacaaIYaaaaOGaey4kaSIaeqySdeMae8xjIaLaamiEamaaCaaa leqabaGaam4AaiabgkHiTiaaigdaaaGccqGHsislcaWG4bWaaWbaaS qabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyiz Imkaaa@6474@

(1+α) x * x k 2 +( α 2 +α) y k 2 ,k1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG ikaiaaigdacqGHRaWkcqaHXoqycaaIPaqeeuuDJXwAKbsr4rNCHbac faGae8xjIaLaamiEamaaCaaaleqabaGaaGOkaaaakiabgkHiTiaadI hadaahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikda aaGccqGHRaWkcaaIOaGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaeqySdeMaaGykaiab=vIiqjaadMhadaahaaWcbeqaaiaadUga aaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaISaGaaGjbVlaadU gacqGHLjYScaaIXaGaaGOlaaaa@5C23@ (4.10)

 В (4.10) второе слагаемое преобразуем с помощью левого неравенства (3.3), затем (4.6). Получим

x k+1 z k 2 (1α) x k+1 x k 2 +(1 α 1 ) x k z k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG6bWaaWbaaSqabeaacaWGRbaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyyzImRaaGikaiaaigdacqGH sislcqaHXoqycaaIPaGae8xjIaLaamiEamaaCaaaleqabaGaam4Aai abgUcaRiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaWGRbaa aOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGikaiaaig dacqGHsislcqaHXoqydaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaI PaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadQ hadaahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikda aaGccqGHLjYSaaa@6696@

(1α) x k+1 x k 2 (1α)α y k 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyyzImRaaG ikaiaaigdacqGHsislcqaHXoqycaaIPaqeeuuDJXwAKbsr4rNCHbac faGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaa GccqGHsislcaWG4bWaaWbaaSqabeaacaWGRbaaaOGae8xjIa1aaWba aSqabeaacaaIYaaaaOGaeyOeI0IaaGikaiaaigdacqGHsislcqaHXo qycaaIPaGaeqySdeMae8xjIaLaamyEamaaCaaaleqabaGaam4Aaaaa kiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiYcaaaa@5840@

 отсюда

(1 Lβ 2m ) x k+1 z k 2 (1 Lβ 2m )(1α) x k+1 x k 2 α y k 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsisldaWcaaqaaiaadYeacqaHYoGyaeaacaaIYaGaamyBaaaa caaIPaqeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamiEamaaCaaale qabaGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG6bWaaWbaaSqa beaacaWGRbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyyzIm RaaGikaiaaigdacqGHsisldaWcaaqaaiaadYeacqaHYoGyaeaacaaI YaGaamyBaaaacaaIPaGaaGikaiaaigdacqGHsislcqaHXoqycaaIPa WaaeWaaeaacqWFLicucaWG4bWaaWbaaSqabeaacaWGRbGaey4kaSIa aGymaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaadUgaaaGccqWFLi cudaahaaWcbeqaaiaaikdaaaGccqGHsislcqaHXoqycqWFLicucaWG 5bWaaWbaaSqabeaacaWGRbaaaOGae8xjIa1aaWbaaSqabeaacaaIYa aaaaGccaGLOaGaayzkaaGaaGOlaaaa@6D98@

 Подставив это преобразование в (4.10), получим неравенство

x k+1 x * 2 + a 1 x k+1 x k 2 +α x k1 x * 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyamaaBaaaleaa caaIXaaabeaakiab=vIiqjaadIhadaahaaWcbeqaaiaadUgacqGHRa WkcaaIXaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaam4Aaaaakiab =vIiqnaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeg7aHjab=vIiqj aadIhadaahaaWcbeqaaiaadUgacqGHsislcaaIXaaaaOGaeyOeI0Ia amiEamaaCaaaleqabaGaaGOkaaaakiab=vIiqnaaCaaaleqabaGaaG OmaaaakiabgsMiJcaa@5F0C@

(1+α) x * x k 2 + a 2 y k 2 ,k1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG ikaiaaigdacqGHRaWkcqaHXoqycaaIPaqeeuuDJXwAKbsr4rNCHbac faGae8xjIaLaamiEamaaCaaaleqabaGaaGOkaaaakiabgkHiTiaadI hadaahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikda aaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaikdaaeqaaOGae8xjIaLaam yEamaaCaaaleqabaGaam4Aaaaakiab=vIiqnaaCaaaleqabaGaaGOm aaaakiaaiYcacaaMe8Uaam4AaiabgwMiZkaaigdacaaISaaaaa@5781@ (4.11)

 где a 1 =(1α)(1 Lβ 2m ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIXaaabeaakiaai2dacaaIOaGaaGymaiabgkHiTiabeg7a HjaaiMcacaaIOaGaaGymaiabgkHiTmaalaaabaGaamitaiabek7aIb qaaiaaikdacaWGTbaaaiaaiMcaaaa@447E@ , a 2 =2α Lβ 2m (α α 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIYaaabeaakiaai2dacaaIYaGaeqySdeMaeyOeI0YaaSaa aeaacaWGmbGaeqOSdigabaGaaGOmaiaad2gaaaGaaGikaiabeg7aHj abgkHiTiabeg7aHnaaCaaaleqabaGaaGOmaaaakiaaiMcaaaa@4691@ , 0<β< 2m L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaHYoGycaaI8aWaaSaaaeaacaaIYaGaamyBaaqaaiaadYeaaaaa aa@3C6D@ .

Теперь рассмотрим неравенства (4.4) и (4.5). Представим неравенство (4.5) в форме

u k+1 w k , u k+1 u * λ h( w k ), u k+1 u * , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaa dEhadaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaaCaaaleqaba Gaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaa caaIQaaaaaGccaGLOaGaayzkaaGaeyizImQaeq4UdW2aaeWaaeaacq GHhis0caWGObGaaGikaiaadEhadaahaaWcbeqaaiaadUgaaaGccaaI PaGaaGilaiaadwhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaO GaeyOeI0IaamyDamaaCaaaleqabaGaaGOkaaaaaOGaayjkaiaawMca aiaaiYcaaaa@587D@ (4.12)

 где по лемме 3.2 h( w k )= B k 1 φ u ( x k+1 , w k ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaam iAaiaaiIcacaWG3bWaaWbaaSqabeaacaWGRbaaaOGaaGykaiaai2da caWGcbWaa0baaSqaaiaadUgaaeaacqGHsislcaaIXaaaaOGaey4bIe TaeqOXdO2aaSbaaSqaaiaadwhaaeqaaOGaaGikaiaadIhadaahaaWc beqaaiaadUgacqGHRaWkcaaIXaaaaOGaaGilaiaadEhadaahaaWcbe qaaiaadUgaaaGccaaIPaaaaa@4CC1@  и, поскольку

h( w k ), u k+1 u * = h( w k ), u * w k h( w k ), w k u k+1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq GHhis0caWGObGaaGikaiaadEhadaahaaWcbeqaaiaadUgaaaGccaaI PaGaaGilaiaadwhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaO GaeyOeI0IaamyDamaaCaaaleqabaGaaGOkaaaaaOGaayjkaiaawMca aiaai2dacqGHsisldaqadaqaaiabgEGirlaadIgacaaIOaGaam4Dam aaCaaaleqabaGaam4AaaaakiaaiMcacaaISaGaamyDamaaCaaaleqa baGaaGOkaaaakiabgkHiTiaadEhadaahaaWcbeqaaiaadUgaaaaaki aawIcacaGLPaaacaaItaYaaeWaaeaacqGHhis0caWGObGaaGikaiaa dEhadaahaaWcbeqaaiaadUgaaaGccaaIPaGaaGilaiaadEhadaahaa WcbeqaaiaadUgaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaWGRbGa ey4kaSIaaGymaaaaaOGaayjkaiaawMcaaiaaiYcaaaa@641F@

 для преобразования получим неравенство

u k+1 w k , u k+1 u * +λ h( w k ), u * w k +λ h( w k ), w k u k+1 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaa dEhadaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaaCaaaleqaba Gaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaa caaIQaaaaaGccaGLOaGaayzkaaGaey4kaSIaeq4UdW2aaeWaaeaacq GHhis0caWGObGaaGikaiaadEhadaahaaWcbeqaaiaadUgaaaGccaaI PaGaaGilaiaadwhadaahaaWcbeqaaiaaiQcaaaGccqGHsislcaWG3b WaaWbaaSqabeaacaWGRbaaaaGccaGLOaGaayzkaaGaey4kaSIaeq4U dW2aaeWaaeaacqGHhis0caWGObGaaGikaiaadEhadaahaaWcbeqaai aadUgaaaGccaaIPaGaaGilaiaadEhadaahaaWcbeqaaiaadUgaaaGc cqGHsislcaWG1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaaaO GaayjkaiaawMcaaiabgsMiJkaaicdacaaIUaaaaa@6A1E@ (4.13)

 С помощью нерасширяющего свойства оператора проектирования ([13], с. 190) и неравенства Коши-Буняковского, из (4.4) имеем

  w k u k 2 α( v k , w k u k )α v k w k u k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaam4DamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadwhadaahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbe qaaiaaikdaaaGccqGHKjYOcqaHXoqycaaIOaGaamODamaaCaaaleqa baGaam4AaaaakiaaiYcacaWG3bWaaWbaaSqabeaacaWGRbaaaOGaey OeI0IaamyDamaaCaaaleqabaGaam4AaaaakiaaiMcacqGHKjYOcqaH XoqycqWFLicucaWG2bWaaWbaaSqabeaacaWGRbaaaOGae8xjIaLae8 xjIaLaam4DamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadwhadaah aaWcbeqaaiaadUgaaaGccqWFLicucqGHKjYOaaa@607D@

  α v k P U ( w k ) P U ( u k ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaeq ySdeweeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamODamaaCaaaleqa baGaam4Aaaaakiab=vIiqjab=vIiqjaadcfadaWgaaWcbaGaamyvaa qabaGccaaIOaGaam4DamaaCaaaleqabaGaam4AaaaakiaaiMcacqGH sislcaWGqbWaaSbaaSqaaiaadwfaaeqaaOGaaGikaiaadwhadaahaa WcbeqaaiaadUgaaaGccaaIPaGae8xjIaLaeyizImkaaa@51F3@

α v k u k +α v k u k = α 2 v k 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaeq ySdeweeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamODamaaCaaaleqa baGaam4Aaaaakiab=vIiqjab=vIiqjaadwhadaahaaWcbeqaaiaadU gaaaGccqGHRaWkcqaHXoqycaWG2bWaaWbaaSqabeaacaWGRbaaaOGa eyOeI0IaamyDamaaCaaaleqabaGaam4Aaaaakiab=vIiqjaai2dacq aHXoqydaahaaWcbeqaaiaaikdaaaGccqWFLicucaWG2bWaaWbaaSqa beaacaWGRbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaGOlaa aa@57A9@ (4.14)

 Первое слагаемое из (4.13) преобразуем с помощью тождества (4.8),

               u * u k+1 , u k+1 w k = u * w k 2 u * u k+1 2 u k+1 w k 2 /2. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaae WaaeaacaWG1bWaaWbaaSqabeaacaaIQaaaaOGaeyOeI0IaamyDamaa CaaaleqabaGaam4AaiabgUcaRiaaigdaaaGccaaISaGaamyDamaaCa aaleqabaGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG3bWaaWba aSqabeaacaWGRbaaaaGccaGLOaGaayzkaaGaaGypaiabgkHiTmaabm aabaqeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqa baGaaGOkaaaakiabgkHiTiaadEhadaahaaWcbeqaaiaadUgaaaGccq WFLicudaahaaWcbeqaaiaaikdaaaGccqGHsislcqWFLicucaWG1bWa aWbaaSqabeaacaaIQaaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaam 4AaiabgUcaRiaaigdaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGc cqGHsislcqWFLicucaWG1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaG ymaaaakiabgkHiTiaadEhadaahaaWcbeqaaiaadUgaaaGccqWFLicu daahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaaIVaGaaGOmai aai6caaaa@6E35@

 Ко второму и третьему слагаемым из (4.13) применим соответственно неравенства (см. [14], гл. 2, с.44; и [13], гл. 2, с. 93)

                                                       h( w k ), u * w k h( u * )h( w k ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq GHhis0caWGObGaaGikaiaadEhadaahaaWcbeqaaiaadUgaaaGccaaI PaGaaGilaiaadwhadaahaaWcbeqaaiaaiQcaaaGccqGHsislcaWG3b WaaWbaaSqabeaacaWGRbaaaaGccaGLOaGaayzkaaGaeyyzImRaamiA aiaaiIcacaWG1bWaaWbaaSqabeaacaaIQaaaaOGaaGykaiabgkHiTi aadIgacaaIOaGaam4DamaaCaaaleqabaGaam4AaaaakiaaiMcacaaI Saaaaa@4F3B@

                                  h( w k ), w k u k+1 h( w k )h( u k+1 ) R 2 u k+1 w k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq GHhis0caWGObGaaGikaiaadEhadaahaaWcbeqaaiaadUgaaaGccaaI PaGaaGilaiaadEhadaahaaWcbeqaaiaadUgaaaGccaaItaIaamyDam aaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaaakiaawIcacaGLPaaa cqGHLjYScaWGObGaaGikaiaadEhadaahaaWcbeqaaiaadUgaaaGcca aIPaGaeyOeI0IaamiAaiaaiIcacaWG1bWaaWbaaSqabeaacaWGRbGa ey4kaSIaaGymaaaakiaaiMcacqGHsisldaWcaaqaaiaadkfaaeaaca aIYaaaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadwhadaahaaWc beqaaiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0Iaam4DamaaCaaale qabaGaam4Aaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaaaaa@6322@

 здесь число R= L 0 /(2p) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaai2 dacaWGmbWaaWbaaSqabeaacaaIWaaaaOGaaG4laiaaiIcacaaIYaGa amiCaiaaiMcaaaa@3D26@  определено в лемме 3.2.

Приведя подобные, учитывая условие вогнутости h( u * )h( u k+1 )0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaWG1bWaaWbaaSqabeaacaaIQaaaaOGaaGykaiabgkHiTiaadIga caaIOaGaamyDamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGcca aIPaGaeyyzImRaaGimaaaa@43AB@  и лемму 3.2, правая часть (4.12) с учётом (4.13) преобразуется к виду

                           λ h( w k ), u k+1 u * λ R 2 u k+1 w k 2 = L 0 λ 4p u k+1 w k 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aae WaaeaacqGHhis0caWGObGaaGikaiaadEhadaahaaWcbeqaaiaadUga aaGccaaIPaGaaGilaiaadwhadaahaaWcbeqaaiaadUgacqGHRaWkca aIXaaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaaGOkaaaaaOGaayjk aiaawMcaaiabgsMiJkabeU7aSnaalaaabaGaamOuaaqaaiaaikdaaa qeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGa am4AaiabgUcaRiaaigdaaaGccqGHsislcaWG3bWaaWbaaSqabeaaca WGRbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaGypamaalaaa baGaamitamaaCaaaleqabaGaaGimaaaakiabeU7aSbqaaiaaisdaca WGWbaaaiab=vIiqjaadwhadaahaaWcbeqaaiaadUgacqGHRaWkcaaI XaaaaOGaeyOeI0Iaam4DamaaCaaaleqabaGaam4Aaaaakiab=vIiqn aaCaaaleqabaGaaGOmaaaakiaai6caaaa@6AC7@

 Тогда из (4.12) и, следовательно, (4.13), следует,

                                  u k+1 u * 2 +(1 L 0 λ 4p ) u k+1 w k 2 w k u * 2 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGikaiaaigdacqGH sisldaWcaaqaaiaadYeadaahaaWcbeqaaiaaicdaaaGccqaH7oaBae aacaaI0aGaamiCaaaacaaIPaGae8xjIaLaamyDamaaCaaaleqabaGa am4AaiabgUcaRiaaigdaaaGccqGHsislcaWG3bWaaWbaaSqabeaaca WGRbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyOeI0Iae8xj IaLaam4DamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadwhadaahaa WcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccqGH KjYOcaaIWaGaaGOlaaaa@63A3@  (4.15)

 Преобразуем здесь второе слагаемое с помощью левого неравенства (3.3) при ε=α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypaiabeg7aHbaa@3A04@ , учтём оценку (4.14),

                 u k+1 w k 2 (1α) u k+1 u k 2 +(1 α 1 ) u k w k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG3bWaaWbaaSqabeaacaWGRbaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyyzImRaaGikaiaaigdacqGH sislcqaHXoqycaaIPaGae8xjIaLaamyDamaaCaaaleqabaGaam4Aai abgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaWGRbaa aOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGikaiaaig dacqGHsislcqaHXoqydaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaI PaGae8xjIaLaamyDamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadE hadaahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikda aaGccqGHLjYSaaa@6684@

                                               (1α) u k+1 u k 2 +(1 α 1 ) α 2 v k 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyyzImRaaG ikaiaaigdacqGHsislcqaHXoqycaaIPaqeeuuDJXwAKbsr4rNCHbac faGae8xjIaLaamyDamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaa GccqGHsislcaWG1bWaaWbaaSqabeaacaWGRbaaaOGae8xjIa1aaWba aSqabeaacaaIYaaaaOGaey4kaSIaaGikaiaaigdacqGHsislcqaHXo qydaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaIPaGaeqySde2aaWba aSqabeaacaaIYaaaaOGae8xjIaLaamODamaaCaaaleqabaGaam4Aaa aakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiYcaaaa@5AFE@

                                b u k+1 w k 2 (1α)b u k+1 u k 2 (1α)αb v k 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaebbfv 3ySLgzGueE0jxyaGqbaiab=vIiqjaadwhadaahaaWcbeqaaiaadUga cqGHRaWkcaaIXaaaaOGaeyOeI0Iaam4DamaaCaaaleqabaGaam4Aaa aakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgwMiZkaaiIcacaaI XaGaeyOeI0IaeqySdeMaaGykaiaadkgacqWFLicucaWG1bWaaWbaaS qabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaadwhadaahaaWc beqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHsi slcaaIOaGaaGymaiabgkHiTiabeg7aHjaaiMcacqaHXoqycaWGIbGa e8xjIaLaamODamaaCaaaleqabaGaam4Aaaaakiab=vIiqnaaCaaale qabaGaaGOmaaaakiaaiYcaaaa@64E5@

  b=1 L 0 λ 4p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaai2 dacaaIXaGaeyOeI0YaaSaaaeaacaWGmbWaaWbaaSqabeaacaaIWaaa aOGaeq4UdWgabaGaaGinaiaadchaaaaaaa@3E86@ , а третье слагаемое преобразуем с помощью нерастягивающего свойства оператора проектирования и (4.8),

                 w k u * 2 P U ( u k +α v k ) P U ( u * ) 2 u k +α v k u * 2 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaam4DamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbe qaaiaaikdaaaGccqGHKjYOcqWFLicucaWGqbWaaSbaaSqaaiaadwfa aeqaaOGaaGikaiaadwhadaahaaWcbeqaaiaadUgaaaGccqGHRaWkcq aHXoqycaWG2bWaaWbaaSqabeaacaWGRbaaaOGaaGykaiabgkHiTiaa dcfadaWgaaWcbaGaamyvaaqabaGccaaIOaGaamyDamaaCaaaleqaba GaaGOkaaaakiaaiMcacqWFLicudaahaaWcbeqaaiaaikdaaaGccqGH KjYOcqWFLicucaWG1bWaaWbaaSqabeaacaWGRbaaaOGaey4kaSIaeq ySdeMaamODamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadwhadaah aaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGcca aI9aaaaa@66FA@

                                              = u k u * 2 +2α( v k , u k u * )+ α 2 v k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaebbfv 3ySLgzGueE0jxyaGqbaiab=vIiqjaadwhadaahaaWcbeqaaiaadUga aaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa1aaW baaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiabeg7aHjaaiIcacaWG 2bWaaWbaaSqabeaacaWGRbaaaOGaaGilaiaadwhadaahaaWcbeqaai aadUgaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaOGaaGyk aiabgUcaRiabeg7aHnaaCaaaleqabaGaaGOmaaaakiab=vIiqjaadA hadaahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikda aaGccqGHKjYOaaa@5A5B@

                                  (1+α) u k u * 2 +( α 2 +α) v k 2 α u k1 u * 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG ikaiaaigdacqGHRaWkcqaHXoqycaaIPaqeeuuDJXwAKbsr4rNCHbac faGae8xjIaLaamyDamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadw hadaahaaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikda aaGccqGHRaWkcaaIOaGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaeqySdeMaaGykaiab=vIiqjaadAhadaahaaWcbeqaaiaadUga aaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHsislcqaHXoqycq WFLicucaWG1bWaaWbaaSqabeaacaWGRbGaeyOeI0IaaGymaaaakiab gkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbe qaaiaaikdaaaGccaaISaaaaa@62B6@

                   w k u * 2 (1+α) u k u * 2 ( α 2 +α) v k 2 +α u k1 u * 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0seeu uDJXwAKbsr4rNCHbacfaGae8xjIaLaam4DamaaCaaaleqabaGaam4A aaaakiabgkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicuda ahaaWcbeqaaiaaikdaaaGccqGHLjYScqGHsislcaaIOaGaaGymaiab gUcaRiabeg7aHjaaiMcacqWFLicucaWG1bWaaWbaaSqabeaacaWGRb aaaOGaeyOeI0IaamyDamaaCaaaleqabaGaaGOkaaaakiab=vIiqnaa CaaaleqabaGaaGOmaaaakiabgkHiTiaaiIcacqaHXoqydaahaaWcbe qaaiaaikdaaaGccqGHRaWkcqaHXoqycaaIPaGae8xjIaLaamODamaa CaaaleqabaGaam4Aaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaaki abgUcaRiabeg7aHjab=vIiqjaadwhadaahaaWcbeqaaiaadUgacqGH sislcaaIXaaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaaGOkaaaaki ab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiYcaaaa@6CC1@

 где использована получаемая с помощью (4.8) оценка

   2α( v k , u k u * )=2α( u k1 u k , u k u * )=α v k 2 α u k1 u * 2 +α u k u * 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabeg 7aHjaaiIcacaWG2bWaaWbaaSqabeaacaWGRbaaaOGaaGilaiaadwha daahaaWcbeqaaiaadUgaaaGccqGHsislcaWG1bWaaWbaaSqabeaaca aIQaaaaOGaaGykaiaai2dacqGHsislcaaIYaGaeqySdeMaaGikaiaa dwhadaahaaWcbeqaaiaadUgacqGHsislcaaIXaaaaOGaeyOeI0Iaam yDamaaCaaaleqabaGaam4AaaaakiaaiYcacaWG1bWaaWbaaSqabeaa caWGRbaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaaGOkaaaakiaaiM cacaaI9aGaeqySdeweeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamOD amaaCaaaleqabaGaam4Aaaaakiab=vIiqnaaCaaaleqabaGaaGOmaa aakiabgkHiTiabeg7aHjab=vIiqjaadwhadaahaaWcbeqaaiaadUga cqGHsislcaaIXaaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaaGOkaa aakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeg7aHjab =vIiqjaadwhadaahaaWcbeqaaiaadUgaaaGccqGHsislcaWG1bWaaW baaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGa aGOlaaaa@776E@

 С учётом этих преобразований из (4.15) получим,

    u k+1 u * 2 + a 3 u k+1 u k 2 +α u k1 u * 2 (1+α) u k u * 2 + a 4 v k 2 ,k1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyamaaBaaaleaa caaIZaaabeaakiab=vIiqjaadwhadaahaaWcbeqaaiaadUgacqGHRa WkcaaIXaaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaam4Aaaaakiab =vIiqnaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeg7aHjab=vIiqj aadwhadaahaaWcbeqaaiaadUgacqGHsislcaaIXaaaaOGaeyOeI0Ia amyDamaaCaaaleqabaGaaGOkaaaakiab=vIiqnaaCaaaleqabaGaaG OmaaaakiabgsMiJkaaiIcacaaIXaGaey4kaSIaeqySdeMaaGykaiab =vIiqjaadwhadaahaaWcbeqaaiaadUgaaaGccqGHsislcaWG1bWaaW baaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaamyyamaaBaaaleaacaaI0aaabeaakiab=vIiqjaadAhada ahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGc caaISaGaaGjbVlaadUgacqGHLjYScaaIXaGaaGilaaaa@7A2E@      (4.16)

 где a 3 =1α L 0 (1α)λ 4p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIZaaabeaakiaai2dacaaIXaGaeyOeI0IaeqySdeMaeyOe I0YaaSaaaeaacaWGmbWaaWbaaSqabeaacaaIWaaaaOGaaGikaiaaig dacqGHsislcqaHXoqycaaIPaGaeq4UdWgabaGaaGinaiaadchaaaaa aa@46B0@ , a 4 =2α L 0 λ 4p (α α 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaI0aaabeaakiaai2dacaaIYaGaeqySdeMaeyOeI0YaaSaa aeaacaWGmbWaaWbaaSqabeaacaaIWaaaaOGaeq4UdWgabaGaaGinai aadchaaaGaaGikaiabeg7aHjabgkHiTiabeg7aHnaaCaaaleqabaGa aGOmaaaakiaaiMcaaaa@479C@ , 0<λ< 4p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaH7oaBcaaI8aWaaSaaaeaacaaI0aGaamiCaaqaaiaadYeadaah aaWcbeqaaiaaicdaaaaaaaaa@3D6C@ .

Сложив неравенства (4.11) и (4.16), имеем

                 x k+1 x * 2 + u k+1 u * 2 + a 1 x k+1 x k 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xjIaLaamyDamaa CaaaleqabaGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaW baaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaamyyamaaBaaaleaacaaIXaaabeaakiab=vIiqjaadIhada ahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0IaamiEamaa CaaaleqabaGaam4Aaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaaki abgUcaRaaa@5C89@

                                     + a 3 u k+1 u k 2 +α( x k1 x * 2 + u k1 u * 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaam yyamaaBaaaleaacaaIZaaabeaarqqr1ngBPrgifHhDYfgaiuaakiab =vIiqjaadwhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaey OeI0IaamyDamaaCaaaleqabaGaam4Aaaaakiab=vIiqnaaCaaaleqa baGaaGOmaaaakiabgUcaRiabeg7aHjaaiIcacqWFLicucaWG4bWaaW baaSqabeaacaWGRbGaeyOeI0IaaGymaaaakiabgkHiTiaadIhadaah aaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccq GHRaWkcqWFLicucaWG1bWaaWbaaSqabeaacaWGRbGaeyOeI0IaaGym aaaakiabgkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicuda ahaaWcbeqaaiaaikdaaaGccaaIPaGaeyizImkaaa@6154@

                        (1+α)( x * x k 2 + u k u * 2 )+ a 2 y k 2 + a 4 v k 2 ,k1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG ikaiaaigdacqGHRaWkcqaHXoqycaaIPaGaaGikaebbfv3ySLgzGueE 0jxyaGqbaiab=vIiqjaadIhadaahaaWcbeqaaiaaiQcaaaGccqGHsi slcaWG4bWaaWbaaSqabeaacaWGRbaaaOGae8xjIa1aaWbaaSqabeaa caaIYaaaaOGaey4kaSIae8xjIaLaamyDamaaCaaaleqabaGaam4Aaa aakiabgkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicudaah aaWcbeqaaiaaikdaaaGccaaIPaGaey4kaSIaamyyamaaBaaaleaaca aIYaaabeaakiab=vIiqjaadMhadaahaaWcbeqaaiaadUgaaaGccqWF LicudaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGHbWaaSbaaSqaai aaisdaaeqaaOGae8xjIaLaamODamaaCaaaleqabaGaam4Aaaaakiab =vIiqnaaCaaaleqabaGaaGOmaaaakiaaiYcacaaMe8Uaam4Aaiabgw MiZkaaigdacaaIUaaaaa@69F1@ (4.17)

 Просуммируем (4.17) от k=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaIXaaaaa@3869@  до k=m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaWGTbaaaa@38A0@ , m1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgw MiZkaaigdaaaa@396A@ , тогда

                 α( x 0 x * 2 + u 0 u * 2 )+ x m+1 x * 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ikaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadIhadaahaaWcbeqa aiaaicdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xjIaLaamyDamaa CaaaleqabaGaaGimaaaakiabgkHiTiaadwhadaahaaWcbeqaaiaaiQ caaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIPaGaey4kaSIa e8xjIaLaamiEamaaCaaaleqabaGaamyBaiabgUcaRiaaigdaaaGccq GHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqa beaacaaIYaaaaOGaey4kaScaaa@59D6@

                                    + a 1 x m+1 x m 2 + u m+1 u * 2 + a 3 u m+1 u m 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaam yyamaaBaaaleaacaaIXaaabeaarqqr1ngBPrgifHhDYfgaiuaakiab =vIiqjaadIhadaahaaWcbeqaaiaad2gacqGHRaWkcaaIXaaaaOGaey OeI0IaamiEamaaCaaaleqabaGaamyBaaaakiab=vIiqnaaCaaaleqa baGaaGOmaaaakiabgUcaRiab=vIiqjaadwhadaahaaWcbeqaaiaad2 gacqGHRaWkcaaIXaaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaaGOk aaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadggada WgaaWcbaGaaG4maaqabaGccqWFLicucaWG1bWaaWbaaSqabeaacaWG TbGaey4kaSIaaGymaaaakiabgkHiTiaadwhadaahaaWcbeqaaiaad2 gaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHRaWkaaa@5F84@

                                  + k=1 k=m1 ( a 1 a 2 ) x k+1 x k 2 +( a 3 a 4 ) u k+1 u k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaa bCaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWGRbGaaGypaiaad2ga cqGHsislcaaIXaaaniabggHiLdGcdaqadaqaaiaaiIcacaWGHbWaaS baaSqaaiaaigdaaeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIYaaa beaakiaaiMcarqqr1ngBPrgifHhDYfgaiuaacqWFLicucaWG4bWaaW baaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaadIhadaah aaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaaIOaGaamyyamaaBaaaleaacaaIZaaabeaakiabgkHiTiaa dggadaWgaaWcbaGaaGinaaqabaGccaaIPaGae8xjIaLaamyDamaaCa aaleqabaGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWba aSqabeaacaWGRbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaaGcca GLOaGaayzkaaGaeyizImkaaa@689F@

                                           a 2 x 1 x 0 2 + a 4 u 1 u 0 2 + x 1 x * 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam yyamaaBaaaleaacaaIYaaabeaarqqr1ngBPrgifHhDYfgaiuaakiab =vIiqjaadIhadaahaaWcbeqaaiaaigdaaaGccqGHsislcaWG4bWaaW baaSqabeaacaaIWaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaamyyamaaBaaaleaacaaI0aaabeaakiab=vIiqjaadwhada ahaaWcbeqaaiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaI WaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xjIa LaamiEamaaCaaaleqabaGaaGymaaaakiabgkHiTiaadIhadaahaaWc beqaaiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHRa Wkaaa@5A73@

                                              + u 1 u * 2 +α( x m x * 2 + u m u * 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSseeu uDJXwAKbsr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaaGym aaaakiabgkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicuda ahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaHXoqycaaIOaGae8xjIaLa amiEamaaCaaaleqabaGaamyBaaaakiabgkHiTiaadIhadaahaaWcbe qaaiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHRaWk cqWFLicucaWG1bWaaWbaaSqabeaacaWGTbaaaOGaeyOeI0IaamyDam aaCaaaleqabaGaaGOkaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaa kiaaiMcacaaISaaaaa@5922@ (4.18)

 где a 1 a 2 =13α L (1α) 2 β 2m >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIXaaabeaakiabgkHiTiaadggadaWgaaWcbaGaaGOmaaqa baGccaaI9aGaaGymaiabgkHiTiaaiodacqaHXoqycqGHsisldaWcaa qaaiaadYeacaaIOaGaaGymaiabgkHiTiabeg7aHjaaiMcadaahaaWc beqaaiaaikdaaaGccqaHYoGyaeaacaaIYaGaamyBaaaacaaI+aGaaG imaaaa@4B9C@ , a 3 a 4 =13α L 0 λ 4p (1α) 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIZaaabeaakiabgkHiTiaadggadaWgaaWcbaGaaGinaaqa baGccaaI9aGaaGymaiabgkHiTiaaiodacqaHXoqycqGHsisldaWcaa qaaiaadYeadaahaaWcbeqaaiaaicdaaaGccqaH7oaBaeaacaaI0aGa amiCaaaacaaIOaGaaGymaiabgkHiTiabeg7aHjaaiMcadaahaaWcbe qaaiaaikdaaaGccaaI+aGaaGimaaaa@4CA9@ , 0<α<1/3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaHXoqycaaI8aGaaGymaiaai+cacaaIZaaaaa@3C0D@ , 0<β< 2m(13α) L (1α) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaHYoGycaaI8aWaaSaaaeaacaaIYaGaamyBaiaaiIcacaaIXaGa eyOeI0IaaG4maiabeg7aHjaaiMcaaeaacaWGmbGaaGikaiaaigdacq GHsislcqaHXoqycaaIPaWaaWbaaSqabeaacaaIYaaaaaaaaaa@476B@ , 0<λ< 4p(13α) L 0 (1α) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaH7oaBcaaI8aWaaSaaaeaacaaI0aGaamiCaiaaiIcacaaIXaGa eyOeI0IaaG4maiabeg7aHjaaiMcaaeaacaWGmbWaaWbaaSqabeaaca aIWaaaaOGaaGikaiaaigdacqGHsislcqaHXoqycaaIPaWaaWbaaSqa beaacaaIYaaaaaaaaaa@4874@ .

К первым двум, пятому и шестому слагаемым правой части (4.18) применим правое неравенство (3.3) при ε=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypaiaaigdaaaa@3920@  

                                            a 2 x 1 x 0 2 2 a 2 ( x 1 x * 2 + x 0 x * 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIYaaabeaarqqr1ngBPrgifHhDYfgaiuaakiab=vIiqjaa dIhadaahaaWcbeqaaiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabe aacaaIWaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyizImQa aGOmaiaadggadaWgaaWcbaGaaGOmaaqabaGccaaIOaGae8xjIaLaam iEamaaCaaaleqabaGaaGymaaaakiabgkHiTiaadIhadaahaaWcbeqa aiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHRaWkcq WFLicucaWG4bWaaWbaaSqabeaacaaIWaaaaOGaeyOeI0IaamiEamaa CaaaleqabaGaaGOkaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaaki aaiMcacaaISaaaaa@5B83@

                                            a 4 u 1 u 0 2 2 a 4 ( u 1 u * 2 + u * u 0 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaI0aaabeaarqqr1ngBPrgifHhDYfgaiuaakiab=vIiqjaa dwhadaahaaWcbeqaaiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabe aacaaIWaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyizImQa aGOmaiaadggadaWgaaWcbaGaaGinaaqabaGccaaIOaGae8xjIaLaam yDamaaCaaaleqabaGaaGymaaaakiabgkHiTiaadwhadaahaaWcbeqa aiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHRaWkcq WFLicucaWG1bWaaWbaaSqabeaacaaIQaaaaOGaeyOeI0IaamyDamaa CaaaleqabaGaaGimaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaaki aaiMcacaaISaaaaa@5B75@

                                                           α( x m x * 2 + u m u * 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ikaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadIhadaahaaWcbeqa aiaad2gaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xjIaLaamyDamaa CaaaleqabaGaamyBaaaakiabgkHiTiaadwhadaahaaWcbeqaaiaaiQ caaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIPaGaeyizImka aa@5074@

                      2α( x m x m+1 2 + x m+1 x * 2 + u m u m+1 2 + u m+1 u * 2 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG Omaiabeg7aHjaaiIcarqqr1ngBPrgifHhDYfgaiuaacqWFLicucaWG 4bWaaWbaaSqabeaacaWGTbaaaOGaeyOeI0IaamiEamaaCaaaleqaba GaamyBaiabgUcaRiaaigdaaaGccqWFLicudaahaaWcbeqaaiaaikda aaGccqGHRaWkcqWFLicucaWG4bWaaWbaaSqabeaacaWGTbGaey4kaS IaaGymaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWF LicudaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqWFLicucaWG1bWaaW baaSqabeaacaWGTbaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaamyB aiabgUcaRiaaigdaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccq GHRaWkcqWFLicucaWG1bWaaWbaaSqabeaacaWGTbGaey4kaSIaaGym aaaakiabgkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicuda ahaaWcbeqaaiaaikdaaaGccaaIPaGaaGOlaaaa@6AE2@

 Тогда из (4.18) следует,

                 (12α) x m+1 x * 2 + u m+1 u * 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsislcaaIYaGaeqySdeMaaGykamaabmaabaqeeuuDJXwAKbsr 4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaamyBaiabgUcaRi aaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xj Ia1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xjIaLaamyDamaaCa aaleqabaGaamyBaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWba aSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaaGcca GLOaGaayzkaaGaey4kaScaaa@56C8@

                                      +( a 1 2α) x m+1 x m 2 +( a 3 2α) u m+1 u m 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadggadaWgaaWcbaGaaGymaaqabaGccqGHsislcaaIYaGaeqyS deMaaGykaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadIhadaahaa Wcbeqaaiaad2gacqGHRaWkcaaIXaaaaOGaeyOeI0IaamiEamaaCaaa leqabaGaamyBaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgU caRiaaiIcacaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0IaaGOm aiabeg7aHjaaiMcacqWFLicucaWG1bWaaWbaaSqabeaacaWGTbGaey 4kaSIaaGymaaaakiabgkHiTiaadwhadaahaaWcbeqaaiaad2gaaaGc cqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHRaWkaaa@5E3F@

                                  + k=1 k=m1 ( a 1 a 2 ) x k+1 x k 2 +( a 3 a 4 ) u k+1 u k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaa bCaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWGRbGaaGypaiaad2ga cqGHsislcaaIXaaaniabggHiLdGcdaqadaqaaiaaiIcacaWGHbWaaS baaSqaaiaaigdaaeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIYaaa beaakiaaiMcarqqr1ngBPrgifHhDYfgaiuaacqWFLicucaWG4bWaaW baaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaadIhadaah aaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaaIOaGaamyyamaaBaaaleaacaaIZaaabeaakiabgkHiTiaa dggadaWgaaWcbaGaaGinaaqabaGccaaIPaGae8xjIaLaamyDamaaCa aaleqabaGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWba aSqabeaacaWGRbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaaGcca GLOaGaayzkaaGaeyizImkaaa@689F@

                          a 5 x 0 x * 2 + a 6 u 0 u * 2 + a 7 x 1 x * 2 + a 8 u 1 u * 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam yyamaaBaaaleaacaaI1aaabeaarqqr1ngBPrgifHhDYfgaiuaakiab =vIiqjaadIhadaahaaWcbeqaaiaaicdaaaGccqGHsislcaWG4bWaaW baaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaamyyamaaBaaaleaacaaI2aaabeaakiab=vIiqjaadwhada ahaaWcbeqaaiaaicdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaI QaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyam aaBaaaleaacaaI3aaabeaakiab=vIiqjaadIhadaahaaWcbeqaaiaa igdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa 1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyamaaBaaaleaacaaI 4aaabeaakiab=vIiqjaadwhadaahaaWcbeqaaiaaigdaaaGccqGHsi slcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaa caaIYaaaaOGaaGilaaaa@66C4@ (4.19)

 где

                                                    a 5 =2 a 2 α=3α L(α α 2 )β m >0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaI1aaabeaakiaai2dacaaIYaGaamyyamaaBaaaleaacaaI YaaabeaakiabgkHiTiabeg7aHjaai2dacaaIZaGaeqySdeMaeyOeI0 YaaSaaaeaacaWGmbGaaGikaiabeg7aHjabgkHiTiabeg7aHnaaCaaa leqabaGaaGOmaaaakiaaiMcacqaHYoGyaeaacaWGTbaaaiaai6daca aIWaGaaGilaaaa@4DF8@

                                                    a 6 =2 a 4 α=3α L 0 (α α 2 )λ 2p >0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaI2aaabeaakiaai2dacaaIYaGaamyyamaaBaaaleaacaaI 0aaabeaakiabgkHiTiabeg7aHjaai2dacaaIZaGaeqySdeMaeyOeI0 YaaSaaaeaacaWGmbWaaWbaaSqabeaacaaIWaaaaOGaaGikaiabeg7a HjabgkHiTiabeg7aHnaaCaaaleqabaGaaGOmaaaakiaaiMcacqaH7o aBaeaacaaIYaGaamiCaaaacaaI+aGaaGimaiaaiYcaaaa@4FBE@

                                                     12α>0, a 7 =1+2 a 2 , a 8 =1+2 a 4 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTiaaikdacqaHXoqycaaI+aGaaGimaiaaiYcacaaMe8Uaamyyamaa BaaaleaacaaI3aaabeaakiaai2dacaaIXaGaey4kaSIaaGOmaiaadg gadaWgaaWcbaGaaGOmaaqabaGccaaISaGaaGjbVlaadggadaWgaaWc baGaaGioaaqabaGccaaI9aGaaGymaiabgUcaRiaaikdacaWGHbWaaS baaSqaaiaaisdaaeqaaOGaaGilaaaa@4E65@

 и, с учётом неравенств

                                                                              0<α<1/3, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaHXoqycaaI8aGaaGymaiaai+cacaaIZaGaaGilaaaa@3CC3@

                                              0< a 1 2α< a 1 a 2 ,0< a 3 2α< a 3 a 4 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaGOmaiabeg7a HjaaiYdacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaamyyam aaBaaaleaacaaIYaaabeaakiaaiYcacaaIWaGaaGipaiaadggadaWg aaWcbaGaaG4maaqabaGccqGHsislcaaIYaGaeqySdeMaaGipaiaadg gadaWgaaWcbaGaaG4maaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaa isdaaeqaaOGaaGilaaaa@4F6B@

                                                          0<β<2m(13α)/[L(1α)], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaHYoGycaaI8aGaaGOmaiaad2gacaaIOaGaaGymaiabgkHiTiaa iodacqaHXoqycaaIPaGaaG4laiaaiUfacaWGmbGaaGikaiaaigdacq GHsislcqaHXoqycaaIPaGaaGyxaiaaiYcaaaa@49AD@

                                                          0<λ<4p(13α)/[ L 0 (1α)], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaH7oaBcaaI8aGaaGinaiaadchacaaIOaGaaGymaiabgkHiTiaa iodacqaHXoqycaaIPaGaaG4laiaaiUfacaWGmbWaaWbaaSqabeaaca aIWaaaaOGaaGikaiaaigdacqGHsislcqaHXoqycaaIPaGaaGyxaiaa iYcaaaa@4AB6@

 неравенство (4.19) упростится

                 (12α) x m+1 x * 2 + u m+1 u * 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsislcaaIYaGaeqySdeMaaGykamaabmaabaqeeuuDJXwAKbsr 4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaamyBaiabgUcaRi aaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xj Ia1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xjIaLaamyDamaaCa aaleqabaGaamyBaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWba aSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaaGcca GLOaGaayzkaaGaey4kaScaaa@56C8@

                                 + k=1 k=m ( a 1 2α) x k+1 x k 2 +( a 3 2α) u k+1 u k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaa bCaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWGRbGaaGypaiaad2ga a0GaeyyeIuoakmaabmaabaGaaGikaiaadggadaWgaaWcbaGaaGymaa qabaGccqGHsislcaaIYaGaeqySdeMaaGykaebbfv3ySLgzGueE0jxy aGqbaiab=vIiqjaadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXa aaaOGaeyOeI0IaamiEamaaCaaaleqabaGaam4Aaaaakiab=vIiqnaa CaaaleqabaGaaGOmaaaakiabgUcaRiaaiIcacaWGHbWaaSbaaSqaai aaiodaaeqaaOGaeyOeI0IaaGOmaiabeg7aHjaaiMcacqWFLicucaWG 1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaadw hadaahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikda aaaakiaawIcacaGLPaaacqGHKjYOaaa@67FB@

                          a 5 x 0 x * 2 + a 6 u 0 u * 2 + a 7 x 1 x * 2 + a 8 u 1 u * 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam yyamaaBaaaleaacaaI1aaabeaarqqr1ngBPrgifHhDYfgaiuaakiab =vIiqjaadIhadaahaaWcbeqaaiaaicdaaaGccqGHsislcaWG4bWaaW baaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaamyyamaaBaaaleaacaaI2aaabeaakiab=vIiqjaadwhada ahaaWcbeqaaiaaicdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaI QaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyam aaBaaaleaacaaI3aaabeaakiab=vIiqjaadIhadaahaaWcbeqaaiaa igdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa 1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyamaaBaaaleaacaaI 4aaabeaakiab=vIiqjaadwhadaahaaWcbeqaaiaaigdaaaGccqGHsi slcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaa caaIYaaaaOGaaGOlaaaa@66C6@ (33)

Из (4.20) при m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgk ziUkabg6HiLcaa@3A47@  следует сходимость ряда

                                    k=1 k= ( a 1 2α) x k+1 x k 2 +( a 3 2α) u k+1 u k 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGRbGaaGypaiaaigdaaeaacaWGRbGaaGypaiabg6HiLcqdcqGH ris5aOWaaeWaaeaacaaIOaGaamyyamaaBaaaleaacaaIXaaabeaaki abgkHiTiaaikdacqaHXoqycaaIPaqeeuuDJXwAKbsr4rNCHbacfaGa e8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGccq GHsislcaWG4bWaaWbaaSqabeaacaWGRbaaaOGae8xjIa1aaWbaaSqa beaacaaIYaaaaOGaey4kaSIaaGikaiaadggadaWgaaWcbaGaaG4maa qabaGccqGHsislcaaIYaGaeqySdeMaaGykaiab=vIiqjaadwhadaah aaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0IaamyDamaaCa aaleqabaGaam4Aaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaaaOGa ayjkaiaawMcaaiaai6caaaa@669B@

 Тогда (4.20) эквивалентно неравенству

                 (12α) x m+1 x * 2 + u m+1 u * 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsislcaaIYaGaeqySdeMaaGykamaabmaabaqeeuuDJXwAKbsr 4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaamyBaiabgUcaRi aaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xj Ia1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xjIaLaamyDamaaCa aaleqabaGaamyBaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWba aSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaaGcca GLOaGaayzkaaGaeyizImkaaa@579B@

                          a 5 x 0 x * 2 + a 6 u 0 u * 2 + a 7 x 1 x * 2 + a 8 u 1 u * 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam yyamaaBaaaleaacaaI1aaabeaarqqr1ngBPrgifHhDYfgaiuaakiab =vIiqjaadIhadaahaaWcbeqaaiaaicdaaaGccqGHsislcaWG4bWaaW baaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaamyyamaaBaaaleaacaaI2aaabeaakiab=vIiqjaadwhada ahaaWcbeqaaiaaicdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaI QaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyam aaBaaaleaacaaI3aaabeaakiab=vIiqjaadIhadaahaaWcbeqaaiaa igdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa 1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyamaaBaaaleaacaaI 4aaabeaakiab=vIiqjaadwhadaahaaWcbeqaaiaaigdaaaGccqGHsi slcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaa caaIYaaaaOGaaGOlaaaa@66C6@

 Следовательно, из (4.20) следует: x k x * 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucqGHsgIRca aIWaaaaa@446B@ , u k u * 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucqGHsgIRca aIWaaaaa@4465@ , k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaayg W7caaMb8UaaGiiaiabgkziUkaaiccacaaMb8UaaGzaVlabg6HiLcaa @41C1@ ; последовательность x k x * 2 + u k u * 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaarq qr1ngBPrgifHhDYfgaiuaacqWFLicucaWG4bWaaWbaaSqabeaacaWG RbaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOkaaaakiab=vIiqn aaCaaaleqabaGaaGOmaaaakiabgUcaRiab=vIiqjaadwhadaahaaWc beqaaiaadUgaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaO Gae8xjIa1aaWbaaSqabeaacaaIYaaaaaGccaGL7bGaayzFaaaaaa@4DE8@  невозрастающая и ограничена и, по теореме Больцано-Вейерштрасса, существует сходящаяся подпоследовательность x k i , u k i ( x * , u * ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WG4bWaaWbaaSqabeaacaWGRbWaaSbaaeaacaWGPbaabeaaaaGccaaI SaGaamyDamaaCaaaleqabaGaam4AamaaBaaabaGaamyAaaqabaaaaa GccaGL7bGaayzFaaGaeyOKH4QaaGiiaiaaygW7caaMb8UaaGikaiaa dIhadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqaba GaaGOkaaaakiaaiMcaaaa@4AD4@ , k i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaWGPbaabeaakiabgkziUkabg6HiLcaa@3B69@  и x k i x * + u k i u * 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AamaaBaaa baGaamyAaaqabaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOkaa aakiab=vIiqjabgUcaRiab=vIiqjaadwhadaahaaWcbeqaaiaadUga daWgaaqaaiaadMgaaeqaaaaakiabgkHiTiaadwhadaahaaWcbeqaai aaiQcaaaGccqWFLicucqGHsgIRcaaIWaaaaa@4E96@ , k i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaWGPbaabeaakiabgkziUkabg6HiLcaa@3B69@ ,

                                                 x k i x k i 1 + u k i u k i 1 0, k i . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AamaaBaaa baGaamyAaaqabaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaam4Aam aaBaaabaGaamyAaaqabaGaeyOeI0IaaGymaaaakiab=vIiqjabgUca Riab=vIiqjaadwhadaahaaWcbeqaaiaadUgadaWgaaqaaiaadMgaae qaaaaakiabgkHiTiaadwhadaahaaWcbeqaaiaadUgadaWgaaqaaiaa dMgaaeqaaiabgkHiTiaaigdaaaGccqWFLicucqGHsgIRcaaIWaGaaG ilaiaaysW7caWGRbWaaSbaaSqaaiaadMgaaeqaaOGaeyOKH4QaeyOh IuQaaGOlaaaa@5CE9@  (4.21)

 Тогда при k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@  из второго и четвёртого уравнений (2.1) следуют равенства (2.5), (2.6), эквивалентные характеристике (1.3) седловой точки в терминах оператора проектирования; следовательно, ( x * , u * ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqabaGa aGOkaaaakiaaiMcaaaa@3BDF@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  седловая точка функции φ(x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyDaiaaiMcaaaa@3BC6@ , то есть решение задачи (1.1).

Положим x * = x c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOkaaaakiaai2dacaWG4bWaaWbaaSqabeaacaWGJbaa aaaa@3AB8@ , u * = u c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaaGOkaaaakiaai2dacaWG1bWaaWbaaSqabeaacaWGJbaa aaaa@3AB2@ , выберем ε>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaeq yTduMaaGOpaiaaicdaaaa@39F0@  и числа k i 0 =r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaWGPbWaaSbaaeaacaaIWaaabeaaaeqaaOGaaGypaiaadkha aaa@3AA4@  и rm1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabgw MiZkaad2gacqGHsislcaaIXaaaaa@3B4E@  так, чтобы выполнялись неравенства

                             x k i x k i 1 2 ε/(4 a 2 2α), u k i u k i 1 2 ε/(4 a 3 2α), x m x c 2 ε/(4+4α), u m u c 2 ε/(4+4α). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadIhadaahaaWcbeqa aiaadUgadaWgaaqaaiaadMgaaeqaaaaakiabgkHiTiaadIhadaahaa WcbeqaaiaadUgadaWgaaqaaiaadMgaaeqaaiabgkHiTiaaigdaaaGc cqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHKjYOcqaH1oqzcaaIVa GaaGikaiaaisdacaWGHbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Ia aGOmaiabeg7aHjaaiMcacaaISaGae8xjIaLaamyDamaaCaaaleqaba Gaam4AamaaBaaabaGaamyAaaqabaaaaOGaeyOeI0IaamyDamaaCaaa leqabaGaam4AamaaBaaabaGaamyAaaqabaGaeyOeI0IaaGymaaaaki ab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgsMiJkabew7aLjaai+ca caaIOaGaaGinaiaadggadaWgaaWcbaGaaG4maaqabaGccqGHsislca aIYaGaeqySdeMaaGykaiaaiYcaaeaacqWFLicucaWG4bWaaWbaaSqa beaacaWGTbaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaam4yaaaaki ab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgsMiJkabew7aLjaai+ca caaIOaGaaGinaiabgUcaRiaaisdacqaHXoqycaaIPaGaaGilaiab=v IiqjaadwhadaahaaWcbeqaaiaad2gaaaGccqGHsislcaWG1bWaaWba aSqabeaacaWGJbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaey izImQaeqyTduMaaG4laiaaiIcacaaI0aGaey4kaSIaaGinaiabeg7a HjaaiMcacaaIUaaaaaaa@900D@ (4.22)

 Просуммируем (4.17) от k=m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaWGTbaaaa@38A0@  до k=N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaWGobaaaa@3881@  при x * = x c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOkaaaakiaai2dacaWG4bWaaWbaaSqabeaacaWGJbaa aaaa@3AB8@ , u * = u c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaaGOkaaaakiaai2dacaWG1bWaaWbaaSqabeaacaWGJbaa aaaa@3AB2@ , N>rm1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaai6 dacaWGYbGaeyyzImRaamyBaiabgkHiTiaaigdaaaa@3CE9@ :

                 x N+1 x c 2 + a 1 x N+1 x N 2 + u N+1 u c 2 + a 3 u N+1 u N 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaamOtaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaWGJbaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyamaaBaaaleaa caaIXaaabeaakiab=vIiqjaadIhadaahaaWcbeqaaiaad6eacqGHRa WkcaaIXaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaamOtaaaakiab =vIiqnaaCaaaleqabaGaaGOmaaaakiabgUcaRiab=vIiqjaadwhada ahaaWcbeqaaiaad6eacqGHRaWkcaaIXaaaaOGaeyOeI0IaamyDamaa CaaaleqabaGaam4yaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaaki abgUcaRiaadggadaWgaaWcbaGaaG4maaqabaGccqWFLicucaWG1bWa aWbaaSqabeaacaWGobGaey4kaSIaaGymaaaakiabgkHiTiaadwhada ahaaWcbeqaaiaad6eaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGc cqGHRaWkaaa@68F5@

                                                       +α( x m1 x c 2 + u m1 u c 2 )+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaeq ySdeMaaGikaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadIhadaah aaWcbeqaaiaad2gacqGHsislcaaIXaaaaOGaeyOeI0IaamiEamaaCa aaleqabaGaam4yaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiab gUcaRiab=vIiqjaadwhadaahaaWcbeqaaiaad2gacqGHsislcaaIXa aaaOGaeyOeI0IaamyDamaaCaaaleqabaGaam4yaaaakiab=vIiqnaa CaaaleqabaGaaGOmaaaakiaaiMcacqGHRaWkaaa@543B@

                                 + k=m k=N1 ( a 1 a 2 ) x k+1 x k 2 +( a 3 a 4 ) u k+1 u k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaa bCaeqaleaacaWGRbGaaGypaiaad2gaaeaacaWGRbGaaGypaiaad6ea cqGHsislcaaIXaaaniabggHiLdGcdaqadaqaaiaaiIcacaWGHbWaaS baaSqaaiaaigdaaeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIYaaa beaakiaaiMcarqqr1ngBPrgifHhDYfgaiuaacqWFLicucaWG4bWaaW baaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaadIhadaah aaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaaIOaGaamyyamaaBaaaleaacaaIZaaabeaakiabgkHiTiaa dggadaWgaaWcbaGaaGinaaqabaGccaaIPaGae8xjIaLaamyDamaaCa aaleqabaGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWba aSqabeaacaWGRbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaaGcca GLOaGaayzkaaGaeyizImkaaa@68B7@

                             x m x c 2 + u m u c 2 +α( x N x c 2 + u N u c 2 )+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImAeeu uDJXwAKbsr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaamyB aaaakiabgkHiTiaadIhadaahaaWcbeqaaiaadogaaaGccqWFLicuda ahaaWcbeqaaiaaikdaaaGccqGHRaWkcqWFLicucaWG1bWaaWbaaSqa beaacaWGTbaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaam4yaaaaki ab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeg7aHjaaiIca cqWFLicucaWG4bWaaWbaaSqabeaacaWGobaaaOGaeyOeI0IaamiEam aaCaaaleqabaGaam4yaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaa kiabgUcaRiab=vIiqjaadwhadaahaaWcbeqaaiaad6eaaaGccqGHsi slcaWG1bWaaWbaaSqabeaacaWGJbaaaOGae8xjIa1aaWbaaSqabeaa caaIYaaaaOGaaGykaiabgUcaRaaa@63F2@

                                                     + a 2 x m x m1 2 + a 4 u m u m1 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaam yyamaaBaaaleaacaaIYaaabeaarqqr1ngBPrgifHhDYfgaiuaakiab =vIiqjaadIhadaahaaWcbeqaaiaad2gaaaGccqGHsislcaWG4bWaaW baaSqabeaacaWGTbGaeyOeI0IaaGymaaaakiab=vIiqnaaCaaaleqa baGaaGOmaaaakiabgUcaRiaadggadaWgaaWcbaGaaGinaaqabaGccq WFLicucaWG1bWaaWbaaSqabeaacaWGTbaaaOGaeyOeI0IaamyDamaa CaaaleqabaGaamyBaiabgkHiTiaaigdaaaGccqWFLicudaahaaWcbe qaaiaaikdaaaGccaaIUaaaaa@54D3@ (4.23)

 Третье, четвёртое слагаемые в правой части (4.23) оценим с помощью правого неравенства (3.3) при ε=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypaiaaigdaaaa@3920@ :

                                       α x N x c 2 2α( x N x N+1 2 + x N+1 x c 2 ), α u N u c 2 2α( u N u N+1 2 + u N+1 u c 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiabeg7aHfbbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadIhadaah aaWcbeqaaiaad6eaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaWGJb aaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyizImQaaGOmaiab eg7aHjaaiIcacqWFLicucaWG4bWaaWbaaSqabeaacaWGobaaaOGaey OeI0IaamiEamaaCaaaleqabaGaamOtaiabgUcaRiaaigdaaaGccqWF LicudaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqWFLicucaWG4bWaaW baaSqabeaacaWGobGaey4kaSIaaGymaaaakiabgkHiTiaadIhadaah aaWcbeqaaiaadogaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGcca aIPaGaaGilaaqaaiabeg7aHjab=vIiqjaadwhadaahaaWcbeqaaiaa d6eaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaWGJbaaaOGae8xjIa 1aaWbaaSqabeaacaaIYaaaaOGaeyizImQaaGOmaiabeg7aHjaaiIca cqWFLicucaWG1bWaaWbaaSqabeaacaWGobaaaOGaeyOeI0IaamyDam aaCaaaleqabaGaamOtaiabgUcaRiaaigdaaaGccqWFLicudaahaaWc beqaaiaaikdaaaGccqGHRaWkcqWFLicucaWG1bWaaWbaaSqabeaaca WGobGaey4kaSIaaGymaaaakiabgkHiTiaadwhadaahaaWcbeqaaiaa dogaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIPaGaaGilaa aaaaa@8392@

 пятое и шестое слагаемые в левой части (4.23) оценим с помощью левого неравенства (3.3) при ε=1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypaiaaigdacaaIVaGaaGOmaaaa@3A95@ :

                                     α x m1 x c 2 α( x m1 x m 2 /2α x m x c 2 , α u m1 u c 2 α( u m1 u m 2 /2α u m u c 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiabeg7aHfbbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadIhadaah aaWcbeqaaiaad2gacqGHsislcaaIXaaaaOGaeyOeI0IaamiEamaaCa aaleqabaGaam4yaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiab gwMiZkabeg7aHjaaiIcacqWFLicucaWG4bWaaWbaaSqabeaacaWGTb GaeyOeI0IaaGymaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaad2ga aaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIVaGaaGOmaiabgk HiTiabeg7aHjab=vIiqjaadIhadaahaaWcbeqaaiaad2gaaaGccqGH sislcaWG4bWaaWbaaSqabeaacaWGJbaaaOGae8xjIa1aaWbaaSqabe aacaaIYaaaaOGaaGilaaqaaiabeg7aHjab=vIiqjaadwhadaahaaWc beqaaiaad2gacqGHsislcaaIXaaaaOGaeyOeI0IaamyDamaaCaaale qabaGaam4yaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgwMi Zkabeg7aHjaaiIcacqWFLicucaWG1bWaaWbaaSqabeaacaWGTbGaey OeI0IaaGymaaaakiabgkHiTiaadwhadaahaaWcbeqaaiaad2gaaaGc cqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIVaGaaGOmaiabgkHiTi abeg7aHjab=vIiqjaadwhadaahaaWcbeqaaiaad2gaaaGccqGHsisl caWG1bWaaWbaaSqabeaacaWGJbaaaOGae8xjIa1aaWbaaSqabeaaca aIYaaaaOGaaGOlaaaaaaa@883A@

 С учётом их, и неравенств 0< a 1 2α< a 1 a 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaGOmaiabeg7a HjaaiYdacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaamyyam aaBaaaleaacaaIYaaabeaaaaa@41EE@ , 12α>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTiaaikdacqaHXoqycaaI+aGaaGimaaaa@3B7C@ , 0< a 3 2α< a 3 a 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0IaaGOmaiabeg7a HjaaiYdacaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0Iaamyyam aaBaaaleaacaaI0aaabeaaaaa@41F4@ , верных при условиях (4.1), и подбора подобных, из (4.23) следует

                 (12α) x N+1 x c 2 + u N+1 u c 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsislcaaIYaGaeqySdeMaaGykamaabmaabaqeeuuDJXwAKbsr 4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaamOtaiabgUcaRi aaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaWGJbaaaOGae8xj Ia1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xjIaLaamyDamaaCa aaleqabaGaamOtaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWba aSqabeaacaWGJbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaaGcca GLOaGaayzkaaGaey4kaScaaa@56F2@

                                 + k=m k=N ( a 1 2α) x k+1 x k 2 +( a 3 2α) u k+1 u k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaa bCaeqaleaacaWGRbGaaGypaiaad2gaaeaacaWGRbGaaGypaiaad6ea a0GaeyyeIuoakmaabmaabaGaaGikaiaadggadaWgaaWcbaGaaGymaa qabaGccqGHsislcaaIYaGaeqySdeMaaGykaebbfv3ySLgzGueE0jxy aGqbaiab=vIiqjaadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXa aaaOGaeyOeI0IaamiEamaaCaaaleqabaGaam4Aaaaakiab=vIiqnaa CaaaleqabaGaaGOmaaaakiabgUcaRiaaiIcacaWGHbWaaSbaaSqaai aaiodaaeqaaOGaeyOeI0IaaGOmaiabeg7aHjaaiMcacqWFLicucaWG 1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaadw hadaahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikda aaaakiaawIcacaGLPaaacqGHKjYOaaa@6813@

                        (1+α)( x m x c 2 + u m u c 2 )+( a 2 α/2) x m x m1 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG ikaiaaigdacqGHRaWkcqaHXoqycaaIPaGaaGikaebbfv3ySLgzGueE 0jxyaGqbaiab=vIiqjaadIhadaahaaWcbeqaaiaad2gaaaGccqGHsi slcaWG4bWaaWbaaSqabeaacaWGJbaaaOGae8xjIa1aaWbaaSqabeaa caaIYaaaaOGaey4kaSIae8xjIaLaamyDamaaCaaaleqabaGaamyBaa aakiabgkHiTiaadwhadaahaaWcbeqaaiaadogaaaGccqWFLicudaah aaWcbeqaaiaaikdaaaGccaaIPaGaey4kaSIaaGikaiaadggadaWgaa WcbaGaaGOmaaqabaGccqGHsislcqaHXoqycaaIVaGaaGOmaiaaiMca cqWFLicucaWG4bWaaWbaaSqabeaacaWGTbaaaOGaeyOeI0IaamiEam aaCaaaleqabaGaamyBaiabgkHiTiaaigdaaaGccqWFLicudaahaaWc beqaaiaaikdaaaGccqGHRaWkaaa@66EC@

                                                               +( a 4 α/2) u m u m1 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadggadaWgaaWcbaGaaGinaaqabaGccqGHsislcqaHXoqycaaI VaGaaGOmaiaaiMcarqqr1ngBPrgifHhDYfgaiuaacqWFLicucaWG1b WaaWbaaSqabeaacaWGTbaaaOGaeyOeI0IaamyDamaaCaaaleqabaGa amyBaiabgkHiTiaaigdaaaGccqWFLicudaahaaWcbeqaaiaaikdaaa GccaaIUaaaaa@4D73@

 Отсюда с учётом (4.22), (4.23) и рассуждений и выкладок после (4.20), получим:

                 (12α) x N+1 x c 2 + u N+1 u c 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsislcaaIYaGaeqySdeMaaGykamaabmaabaqeeuuDJXwAKbsr 4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaamOtaiabgUcaRi aaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaWGJbaaaOGae8xj Ia1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xjIaLaamyDamaaCa aaleqabaGaamOtaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWba aSqabeaacaWGJbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaaGcca GLOaGaayzkaaGaeyizImkaaa@57C5@

                                                    (1+α)( x m x c 2 + u m u c 2 )+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG ikaiaaigdacqGHRaWkcqaHXoqycaaIPaGaaGikaebbfv3ySLgzGueE 0jxyaGqbaiab=vIiqjaadIhadaahaaWcbeqaaiaad2gaaaGccqGHsi slcaWG4bWaaWbaaSqabeaacaWGJbaaaOGae8xjIa1aaWbaaSqabeaa caaIYaaaaOGaey4kaSIae8xjIaLaamyDamaaCaaaleqabaGaamyBaa aakiabgkHiTiaadwhadaahaaWcbeqaaiaadogaaaGccqWFLicudaah aaWcbeqaaiaaikdaaaGccaaIPaGaey4kaScaaa@54C0@

                                +( a 2 α/2) x m x m1 2 +( a 4 α/2) u m u m1 2 ε. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadggadaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaHXoqycaaI VaGaaGOmaiaaiMcarqqr1ngBPrgifHhDYfgaiuaacqWFLicucaWG4b WaaWbaaSqabeaacaWGTbaaaOGaeyOeI0IaamiEamaaCaaaleqabaGa amyBaiabgkHiTiaaigdaaaGccqWFLicudaahaaWcbeqaaiaaikdaaa GccqGHRaWkcaaIOaGaamyyamaaBaaaleaacaaI0aaabeaakiabgkHi Tiabeg7aHjaai+cacaaIYaGaaGykaiab=vIiqjaadwhadaahaaWcbe qaaiaad2gaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaWGTbGaeyOe I0IaaGymaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgsMiJk abew7aLjaai6caaaa@62FB@

 Из этого неравенства и предыдущих рассуждений после (4.20), следует, что вся последовательность x k , u k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WG4bWaaWbaaSqabeaacaWGRbaaaOGaaGilaiaadwhadaahaaWcbeqa aiaadUgaaaaakiaawUhacaGL9baaaaa@3D23@  сходится к седловой точке задачи (1.1), x k , u k ( x c , u c )=( x * , u * ) Q * × U * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WG4bWaaWbaaSqabeaacaWGRbaaaOGaaGilaiaadwhadaahaaWcbeqa aiaadUgaaaaakiaawUhacaGL9baacaaIGaGaaGzaVlabgkziUkaaic cacaaMb8UaaGikaiaadIhadaahaaWcbeqaaiaadogaaaGccaaISaGa amyDamaaCaaaleqabaGaam4yaaaakiaaiMcacaaI9aGaaGikaiaadI hadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqabaGa aGOkaaaakiaaiMcacqGHiiIZcaWGrbWaaSbaaSqaaiaaiQcaaeqaaO Gaey41aqRaamyvamaaCaaaleqabaGaaGOkaaaaaaa@578D@ , k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@ , ибо пространства E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaCa aaleqabaGaamOBaaaaaaa@37E1@  и E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaCa aaleqabaGaamyBaaaaaaa@37E0@  полные, неравенства (36) выполняются для седловой точки ( x * , u * ) Q * × U * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqabaGa aGOkaaaakiaaiMcacqGHiiIZcaWGrbWaaSbaaSqaaiaaiQcaaeqaaO Gaey41aqRaamyvamaaCaaaleqabaGaaGOkaaaaaaa@42F5@  и последовательность x k x * 2 + u k u * 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaarq qr1ngBPrgifHhDYfgaiuaacqWFLicucaWG4bWaaWbaaSqabeaacaWG RbaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOkaaaakiab=vIiqn aaCaaaleqabaGaaGOmaaaakiabgUcaRiab=vIiqjaadwhadaahaaWc beqaaiaadUgaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaO Gae8xjIa1aaWbaaSqabeaacaaIYaaaaaGccaGL7bGaayzFaaaaaa@4DE8@  монотонна и ограничена.

Из сходимости по норме для аргумента, как известно из функционального анализа, следует сходимость по функционалу; прямое доказательство этого факта имеется, например, в работе [7].

Доказательство завершено.

Следствие 4.1. Поскольку по теореме 4.1 (расстояние до точки минимума монотонно убывает) последоательность { x k , u k } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadI hadaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaaCaaaleqabaGa am4Aaaaakiaai2haaaa@3CFE@  сходится монотонно, то имеют место неравенства

                                          x k+1 x * 2 x k x * 2 x 0 x * 2 , u k+1 u * 2 u k u * 2 u 0 u * 2 , x k1 x k 2 x k x k+1 2 x k+1 x k+2 2 , u k1 u k 2 u k u k+1 2 u k+1 u k+2 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaqeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqa baGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabe aacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyizImQa e8xjIaLaamiEamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadIhada ahaaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGc cqGHKjYOcqWIVlctcqGHKjYOcqWFLicucaWG4bWaaWbaaSqabeaaca aIWaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOkaaaakiab=vIi qnaaCaaaleqabaGaaGOmaaaakiaaiYcaaeaacqWFLicucaWG1bWaaW baaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaadwhadaah aaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccq GHKjYOcqWFLicucaWG1bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0Ia amyDamaaCaaaleqabaGaaGOkaaaakiab=vIiqnaaCaaaleqabaGaaG OmaaaakiabgsMiJkabl+UimjabgsMiJkab=vIiqjaadwhadaahaaWc beqaaiaaicdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaO Gae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaGilaaqaaiab=vIiqjaa dIhadaahaaWcbeqaaiaadUgacqGHsislcaaIXaaaaOGaeyOeI0Iaam iEamaaCaaaleqabaGaam4Aaaaakiab=vIiqnaaCaaaleqabaGaaGOm aaaakiabgwMiZkab=vIiqjaadIhadaahaaWcbeqaaiaadUgaaaGccq GHsislcaWG4bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiab =vIiqnaaCaaaleqabaGaaGOmaaaakiabgwMiZkab=vIiqjaadIhada ahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0IaamiEamaa CaaaleqabaGaam4AaiabgUcaRiaaikdaaaGccqWFLicudaahaaWcbe qaaiaaikdaaaGccqGHLjYScqWIVlctcaaISaaabaGae8xjIaLaamyD amaaCaaaleqabaGaam4AaiabgkHiTiaaigdaaaGccqGHsislcaWG1b WaaWbaaSqabeaacaWGRbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaa aOGaeyyzImRae8xjIaLaamyDamaaCaaaleqabaGaam4Aaaaakiabgk HiTiaadwhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGae8xj Ia1aaWbaaSqabeaacaaIYaaaaOGaeyyzImRae8xjIaLaamyDamaaCa aaleqabaGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWba aSqabeaacaWGRbGaey4kaSIaaGOmaaaakiab=vIiqnaaCaaaleqaba GaaGOmaaaakiabgwMiZkabl+Uimjaai6caaaaaaa@CCDA@

5.      Оценка сверхлинейной скорости сходимости ПОДЭМКСМ

Сначала получим вспомогательное неравенство, пользуясь неравенством (3.3).

Лемма 5.1. Если последовательность { x k } x * Q * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadI hadaahaaWcbeqaaiaadUgaaaGccaaI9bGaeyOKH4QaamiEamaaCaaa leqabaGaaGOkaaaakiabgIGiolaadgfadaWgaaWcbaGaaGOkaaqaba aaaa@4136@  построена методом класса ПОДМ или другим методом минимизации, то для приращения y k = x k x k1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaCa aaleqabaGaam4Aaaaakiaai2dacaWG4bWaaWbaaSqabeaacaWGRbaa aOGaeyOeI0IaamiEamaaCaaaleqabaGaam4AaiabgkHiTiaaigdaaa aaaa@3FB6@ , (k1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadU gacqGHLjYScaaIXaGaaGykaaaa@3ACD@  аргумента функции f(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaaaa@3944@  имеет место формула

                                             y k 1(1 ε 1 )(1 ε 1 1 ) 1ε+(1 ε 1 )(1 ε 1 ) 1/2 x k x * , 0<ε<1, ε 1 >1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadMhadaahaaWcbeqa aiaadUgaaaGccqWFLicucqGHKjYOdaqadaqaamaalaaabaGaaGymai abgkHiTiaaiIcacaaIXaGaeyOeI0IaeqyTdu2aaWbaaSqabeaacqGH sislcaaIXaaaaOGaaGykaiaaiIcacaaIXaGaeyOeI0IaeqyTdu2aa0 baaSqaaiaaigdaaeaacqGHsislcaaIXaaaaOGaaGykaaqaaiaaigda cqGHsislcqaH1oqzcqGHRaWkcaaIOaGaaGymaiabgkHiTiabew7aLn aaCaaaleqabaGaeyOeI0IaaGymaaaakiaaiMcacaaIOaGaaGymaiab gkHiTiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiMcaaaaacaGLOa GaayzkaaWaaWbaaSqabeaacaaIXaGaaG4laiaaikdaaaGccqWFLicu caWG4bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamiEamaaCaaale qabaGaaGOkaaaakiab=vIiqjaaiYcaaeaacaaIWaGaaGipaiabew7a LjaaiYdacaaIXaGaaGilaiabew7aLnaaBaaaleaacaaIXaaabeaaki aai6dacaaIXaGaaGOlaaaaaaa@76BC@ (5.1)

 Доказательство. Из левого неравенства (3.3) при u= x k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2 dacaWG4bWaaWbaaSqabeaacaWGRbaaaaaa@39D2@ , v= x k1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaai2 dacaWG4bWaaWbaaSqabeaacaWGRbGaeyOeI0IaaGymaaaaaaa@3B7B@ , w= x * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Daiaai2 dacaWG4bWaaWbaaSqabeaacaaIQaaaaaaa@3998@ , следует неравенство x k x * 2 (1ε) y k 2 +(1 ε 1 ) x k1 x * 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbe qaaiaaikdaaaGccqGHLjYScaaIOaGaaGymaiabgkHiTiabew7aLjaa iMcacqWFLicucaWG5bWaaWbaaSqabeaacaWGRbaaaOGae8xjIa1aaW baaSqabeaacaaIYaaaaOGaey4kaSIaaGikaiaaigdacqGHsislcqaH 1oqzdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaIPaGae8xjIaLaam iEamaaCaaaleqabaGaam4AaiabgkHiTiaaigdaaaGccqGHsislcaWG 4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYa aaaaaa@5FB8@ , ε>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG Opaiaaicdaaaa@3920@ . Отсюда имеем y k 2 1 1ε x k x * 2 1 ε 1 1ε x k1 x * 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyEamaaCaaaleqabaGaam4Aaaaakiab =vIiqnaaCaaaleqabaGaaGOmaaaakiabgsMiJoaalaaabaGaaGymaa qaaiaaigdacqGHsislcqaH1oqzaaGae8xjIaLaamiEamaaCaaaleqa baGaam4AaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccq WFLicudaahaaWcbeqaaiaaikdaaaGccqGHsisldaWcaaqaaiaaigda cqGHsislcqaH1oqzdaahaaWcbeqaaiabgkHiTiaaigdaaaaakeaaca aIXaGaeyOeI0IaeqyTdugaaiab=vIiqjaadIhadaahaaWcbeqaaiaa dUgacqGHsislcaaIXaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaG Okaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaaaaa@6112@ , ε1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaey iyIKRaaGymaaaa@3A20@ . Применяя еще раз левое неравенство (3.3) при u= x k1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2 dacaWG4bWaaWbaaSqabeaacaWGRbGaeyOeI0IaaGymaaaaaaa@3B7A@ , v= x k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaai2 dacaWG4bWaaWbaaSqabeaacaWGRbaaaaaa@39D3@ , w= x * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Daiaai2 dacaWG4bWaaWbaaSqabeaacaaIQaaaaaaa@3998@ , ε= ε 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypaiabew7aLnaaBaaaleaacaaIXaaabeaakiaai6dacaaIWaaaaa@3C7F@ , получим x k1 x * 2 (1 ε 1 ) x k1 x k 2 +(1 ε 1 1 ) x k x * 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgkHi TiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyyzImRaaGikaiaaigdacqGH sislcqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaaIPaGae8xjIaLaam iEamaaCaaaleqabaGaam4AaiabgkHiTiaaigdaaaGccqGHsislcaWG 4bWaaWbaaSqabeaacaWGRbaaaOGae8xjIa1aaWbaaSqabeaacaaIYa aaaOGaey4kaSIaaGikaiaaigdacqGHsislcqaH1oqzdaqhaaWcbaGa aGymaaqaaiabgkHiTiaaigdaaaGccaaIPaGae8xjIaLaamiEamaaCa aaleqabaGaam4AaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaiQca aaGccqWFLicudaahaaWcbeqaaiaaikdaaaaaaa@661C@ , ε 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaOGaaGOpaiaaicdaaaa@3A11@ . Подставим его в правую часть предыдущего неравенства и выберем подходящие интервалы параметров:

y k 2 1 1ε x k x * 2 (1 ε 1 )(1 ε 1 ) 1ε x k1 x k 2 (1 ε 1 )(1 ε 1 1 ) 1ε x k x * 2 , 0<ε<1, ε 1 >1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadMhadaahaaWcbeqa aiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHKjYOda WcaaqaaiaaigdaaeaacaaIXaGaeyOeI0IaeqyTdugaaiab=vIiqjaa dIhadaahaaWcbeqaaiaadUgaaaGccqGHsislcaWG4bWaaWbaaSqabe aacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyOeI0Ya aSaaaeaacaaIOaGaaGymaiabgkHiTiabew7aLnaaCaaaleqabaGaey OeI0IaaGymaaaakiaaiMcacaaIOaGaaGymaiabgkHiTiabew7aLnaa BaaaleaacaaIXaaabeaakiaaiMcaaeaacaaIXaGaeyOeI0IaeqyTdu gaaiab=vIiqjaadIhadaahaaWcbeqaaiaadUgacqGHsislcaaIXaaa aOGaeyOeI0IaamiEamaaCaaaleqabaGaam4Aaaaakiab=vIiqnaaCa aaleqabaGaaGOmaaaakiabgkHiTmaalaaabaGaaGikaiaaigdacqGH sislcqaH1oqzdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaIPaGaaG ikaiaaigdacqGHsislcqaH1oqzdaqhaaWcbaGaaGymaaqaaiabgkHi TiaaigdaaaGccaaIPaaabaGaaGymaiabgkHiTiabew7aLbaacqWFLi cucaWG4bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamiEamaaCaaa leqabaGaaGOkaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiY caaeaacaaIWaGaaGipaiabew7aLjaaiYdacaaIXaGaaGilaiaaysW7 cqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaaI+aGaaGymaiaai6caaa aaaa@8F34@

 Приведём подобные и получим неравенство

                    1+ (1 ε 1 )(1 ε 1 ) 1ε y k 2 1 1ε (1 ε 1 )(1 ε 1 1 ) 1ε x k x * 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabeqaaa qaamaabmaabaGaaGymaiabgUcaRmaalaaabaGaaGikaiaaigdacqGH sislcqaH1oqzdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaIPaGaaG ikaiaaigdacqGHsislcqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaaI PaaabaGaaGymaiabgkHiTiabew7aLbaaaiaawIcacaGLPaaarqqr1n gBPrgifHhDYfgaiuaacqWFLicucaWG5bWaaWbaaSqabeaacaWGRbaa aOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyizIm6aaeWaaeaada WcaaqaaiaaigdaaeaacaaIXaGaeyOeI0IaeqyTdugaaiabgkHiTmaa laaabaGaaGikaiaaigdacqGHsislcqaH1oqzdaahaaWcbeqaaiabgk HiTiaaigdaaaGccaaIPaGaaGikaiaaigdacqGHsislcqaH1oqzdaqh aaWcbaGaaGymaaqaaiabgkHiTiaaigdaaaGccaaIPaaabaGaaGymai abgkHiTiabew7aLbaaaiaawIcacaGLPaaacqWFLicucaWG4bWaaWba aSqabeaacaWGRbaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOkaa aakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiYcaaaaaaa@750A@

 или

                                              y k 2 1(1 ε 1 )(1 ε 1 1 ) 1ε+(1 ε 1 )(1 ε 1 ) x k x * 2 , 0<ε<1, ε 1 >1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadMhadaahaaWcbeqa aiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHKjYOda WcaaqaaiaaigdacqGHsislcaaIOaGaaGymaiabgkHiTiabew7aLnaa CaaaleqabaGaeyOeI0IaaGymaaaakiaaiMcacaaIOaGaaGymaiabgk HiTiabew7aLnaaDaaaleaacaaIXaaabaGaeyOeI0IaaGymaaaakiaa iMcaaeaacaaIXaGaeyOeI0IaeqyTduMaey4kaSIaaGikaiaaigdacq GHsislcqaH1oqzdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaIPaGa aGikaiaaigdacqGHsislcqaH1oqzdaWgaaWcbaGaaGymaaqabaGcca aIPaaaaiab=vIiqjaadIhadaahaaWcbeqaaiaadUgaaaGccqGHsisl caWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaaca aIYaaaaOGaaGilaaqaaiaaicdacaaI8aGaeqyTduMaaGipaiaaigda caaISaGaaGjbVlabew7aLnaaBaaaleaacaaIXaaabeaakiaai6daca aIXaGaaGOlaaaaaaa@763F@  (5.2)

 Для (5.2) выбраны интервалы значений параметров ε, ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ilaiabew7aLnaaBaaaleaacaaIXaaabeaaaaa@3AE2@  так, чтобы иметь положительный коэффициент в правой части (5.1); из (5.2) следует неравенство (5.1).

Доказательство завершено.

Замечание 5.1. Теоретически в (5.1) годны все значения параметров ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdugaaa@379E@ , ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaaaa@3885@  из указанных интервалов, но в практике применения разумно брать их не слишком большими или не слишком малыми (то есть не слишком близкими к границам допустимого для эпсилон интервала).

Например, при 1) ε= 3 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypamaalaaabaGaaG4maaqaaiaaisdaaaaaaa@39F0@ , ε 1 =2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaOGaaGypaiaaikdaaaa@3A12@  (или ε= 2 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypamaalaaabaGaaGOmaaqaaiaaiodaaaaaaa@39EE@ , ε 1 = 3 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaOGaaGypamaalaaabaGaaG4maaqaaiaaikda aaaaaa@3ADF@  ), 2) ε= 1 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypamaalaaabaGaaGymaaqaaiaaikdaaaaaaa@39EC@ , ε 1 = 3 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaOGaaGypamaalaaabaGaaG4maaqaaiaaikda aaaaaa@3ADF@ , а также 3) ε= 2 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypamaalaaabaGaaGOmaaqaaiaaiodaaaaaaa@39EE@ , ε 1 =3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaOGaaGypaiaaiodaaaa@3A13@ , из (5.1) имеем соответственно:

                 1) y k 2 x k x * ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiM cacaaMe8EeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamyEamaaCaaa leqabaGaam4Aaaaakiab=vIiqjabgsMiJoaakaaabaGaaGOmaaWcbe aakiab=vIiqjaadIhadaahaaWcbeqaaiaadUgaaaGccqGHsislcaWG 4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIaLaaG4oaaaa@4C77@

                 2) y k 2 3 x k x * ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiM cacaaMe8EeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamyEamaaCaaa leqabaGaam4Aaaaakiab=vIiqjabgsMiJoaalaaabaGaaGOmaaqaam aakaaabaGaaG4maaWcbeaaaaGccqWFLicucaWG4bWaaWbaaSqabeaa caWGRbaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOkaaaakiab=v IiqjaaiUdaaaa@4D45@ (5.3)

                 3) y k x k x * . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaaiM cacaaMe8EeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamyEamaaCaaa leqabaGaam4Aaaaakiab=vIiqjabgsMiJkab=vIiqjaadIhadaahaa WcbeqaaiaadUgaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaa aOGae8xjIaLaaGOlaaaa@4B8B@

Оценку сверхлинейной скорости сходимости метода (2.1), (4.1) для выпукло вогнутой функции можно получить, если дополнить условия теоремы 5.1 предположением, что функция φ(x,u) C 2,1 (Q×U) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyDaiaaiMcacqGHiiIZcaWGdbWaaWbaaSqa beaacaaIYaGaaGilaiaaigdaaaGccaaIOaGaamyuaiabgEna0kaadw facaaIPaaaaa@45A2@ , и заметить, что в силу теоремы 1 и следствия: x k x * 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucqGHsgIRca aIWaaaaa@446B@ , z k x * 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamOEamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucqGHsgIRca aIWaaaaa@446D@ , и u k x * 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucqGHsgIRca aIWaaaaa@4468@ , w k u * 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaam4DamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucqGHsgIRca aIWaaaaa@4467@ , при y k 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyEamaaCaaaleqabaGaam4Aaaaakiab =vIiqjabgkziUkaaicdaaaa@4197@ , v k 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamODamaaCaaaleqabaGaam4Aaaaakiab =vIiqjabgkziUkaaicdaaaa@4194@ , k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@ .

Тогда, ввиду непрерывности частных гессианов по переменным x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@  и u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@36F1@ , при k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@

                                                      2 φ xx ( x k , u k ) 2 φ xx ( x * , u k )0, 2 φ xx ( z k , u k ) 2 φ xx ( x * , u k )0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjabgEGirpaaCaaaleqa baGaaGOmaaaakiabeA8aQnaaBaaaleaacaWG4bGaamiEaaqabaGcca aIOaGaamiEamaaCaaaleqabaGaam4AaaaakiaaiYcacaWG1bWaaWba aSqabeaacaWGRbaaaOGaaGykaiabgkHiTiabgEGirpaaCaaaleqaba GaaGOmaaaakiabeA8aQnaaBaaaleaacaWG4bGaamiEaaqabaGccaaI OaGaamiEamaaCaaaleqabaGaaGOkaaaakiaaiYcacaWG1bWaaWbaaS qabeaacaWGRbaaaOGaaGykaiab=vIiqjabgkziUkaaicdacaaISaaa baGae8xjIaLaey4bIe9aaWbaaSqabeaacaaIYaaaaOGaeqOXdO2aaS baaSqaaiaadIhacaWG4baabeaakiaaiIcacaWG6bWaaWbaaSqabeaa caWGRbaaaOGaaGilaiaadwhadaahaaWcbeqaaiaadUgaaaGccaaIPa GaeyOeI0Iaey4bIe9aaWbaaSqabeaacaaIYaaaaOGaeqOXdO2aaSba aSqaaiaadIhacaWG4baabeaakiaaiIcacaWG4bWaaWbaaSqabeaaca aIQaaaaOGaaGilaiaadwhadaahaaWcbeqaaiaadUgaaaGccaaIPaGa e8xjIaLaeyOKH4QaaGimaiaaiYcaaaaaaa@7A46@ (5.4)

                                                    2 φ uu ( x k , u k ) 2 φ uu ( x k , u * )0, 2 φ uu ( x k , w k ) 2 φ uu ( x k , u * )0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjabgEGirpaaCaaaleqa baGaaGOmaaaakiabeA8aQnaaBaaaleaacaWG1bGaamyDaaqabaGcca aIOaGaamiEamaaCaaaleqabaGaam4AaaaakiaaiYcacaWG1bWaaWba aSqabeaacaWGRbaaaOGaaGykaiabgkHiTiabgEGirpaaCaaaleqaba GaaGOmaaaakiabeA8aQnaaBaaaleaacaWG1bGaamyDaaqabaGccaaI OaGaamiEamaaCaaaleqabaGaam4AaaaakiaaiYcacaWG1bWaaWbaaS qabeaacaaIQaaaaOGaaGykaiab=vIiqjabgkziUkaaicdacaaISaaa baGae8xjIaLaey4bIe9aaWbaaSqabeaacaaIYaaaaOGaeqOXdO2aaS baaSqaaiaadwhacaWG1baabeaakiaaiIcacaWG4bWaaWbaaSqabeaa caWGRbaaaOGaaGilaiaadEhadaahaaWcbeqaaiaadUgaaaGccaaIPa GaeyOeI0Iaey4bIe9aaWbaaSqabeaacaaIYaaaaOGaeqOXdO2aaSba aSqaaiaadwhacaWG1baabeaakiaaiIcacaWG4bWaaWbaaSqabeaaca WGRbaaaOGaaGilaiaadwhadaahaaWcbeqaaiaaiQcaaaGccaaIPaGa e8xjIaLaeyOKH4QaaGimaiaai6caaaaaaa@7A30@ (5.5)

 Предположим, что x Q * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jbVlaadIhacqGHiiIZcaWGrbWaaSbaaSqaaiaaiQcaaeqaaaaa@3C8B@ , как и в (5.4) u k U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jbVlaadwhadaahaaWcbeqaaiaadUgaaaGccqGHiiIZcaWGvbaaaa@3CD3@ , при k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@  имеем

                                     A( z k )A( x * )0,A( z k ) 2 φ xx (x, u k )0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyqaiaaiIcacaWG6bWaaWbaaSqabeaa caWGRbaaaOGaaGykaiabgkHiTiaadgeacaaIOaGaamiEamaaCaaale qabaGaaGOkaaaakiaaiMcacqWFLicucqGHsgIRcaaIWaGaaGilaiaa ywW7cqWFLicucaWGbbGaaGikaiaadQhadaahaaWcbeqaaiaadUgaaa GccaaIPaGaeyOeI0Iaey4bIe9aaWbaaSqabeaacaaIYaaaaOGaeqOX dO2aaSbaaSqaaiaadIhacaWG4baabeaakiaaiIcacaWG4bGaaGilai aadwhadaahaaWcbeqaaiaadUgaaaGccaaIPaGae8xjIaLaeyOKH4Qa aGimaiaaiYcacaaMe8oaaa@6306@ (5.6)

  u U * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jbVlaadwhacqGHiiIZcaWGvbWaaWbaaSqabeaacaaIQaaaaaaa@3C8D@ ; как и в (5.5) x k Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jbVlaadIhadaahaaWcbeqaaiaadUgaaaGccqGHiiIZcaWGrbaaaa@3CD2@ , при k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@  имеем

                                    B( w k )B( u * )0,B( w k ) 2 φ uu ( x k ,u)0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamOqaiaaiIcacaWG3bWaaWbaaSqabeaa caWGRbaaaOGaaGykaiabgkHiTiaadkeacaaIOaGaamyDamaaCaaale qabaGaaGOkaaaakiaaiMcacqWFLicucqGHsgIRcaaIWaGaaGilaiaa ywW7cqWFLicucaWGcbGaaGikaiaadEhadaahaaWcbeqaaiaadUgaaa GccaaIPaGaeyOeI0Iaey4bIe9aaWbaaSqabeaacaaIYaaaaOGaeqOX dO2aaSbaaSqaaiaadwhacaWG1baabeaakiaaiIcacaWG4bWaaWbaaS qabeaacaWGRbaaaOGaaGilaiaadwhacaaIPaGae8xjIaLaeyOKH4Qa aGimaiaai6caaaa@616F@ (5.7)

Теорема 5.1. Пусть выполнены все условия теоремы 4.1, леммы 5.1 и, кроме того:

1) функция φ(x,u) C 2,1 (Q×U) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyDaiaaiMcacqGHiiIZcaWGdbWaaWbaaSqa beaacaaIYaGaaGilaiaaigdaaaGccaaIOaGaamyuaiabgEna0kaadw facaaIPaaaaa@45A2@ ;

2) для последовательности { x k , u k }( x * , u * ) W * = Q * × U * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadI hadaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaaCaaaleqabaGa am4Aaaaakiaai2hacqGHsgIRcaaIOaGaamiEamaaCaaaleqabaGaaG OkaaaakiaaiYcacaWG1bWaaWbaaSqabeaacaaIQaaaaOGaaGykaiab gIGiolaadEfadaWgaaWcbaGaaGOkaaqabaGccaaI9aGaamyuamaaBa aaleaacaaIQaaabeaakiabgEna0kaadwfadaahaaWcbeqaaiaaiQca aaaaaa@4E76@ , вырабатываемой ПОДЭМКСМ (2.1)-(2.4), (4.1), существует номер N>1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaai6 dacaaIXaaaaa@384D@  такой, что β k =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaadUgaaeqaaOGaaGypaiaaigdaaaa@3A40@ , λ k =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaadUgaaeqaaOGaaGypaiaaigdaaaa@3A53@  при kN MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgw MiZkaad6eaaaa@3980@ ;

3) выполнены соотношения (5.4), (5.5) и (5.6), (5.7).

Тогда последовательность { x k , u k } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadI hadaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaaCaaaleqabaGa am4Aaaaakiaai2haaaa@3CFE@ , определяемая ПОДЭМКСМ (2.1), (4.1), со сверхлинейной скоростью сходится к решению задачи (1.1) при k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@  и

                                x k+1 x * + u k+1 u * q 1k x k x * + q 2k u k u * , q 1k =A( z k ) 2 φ xx ( ξ k , u k )(1+ 2 α)/m0, q 2k =B( w k ) 2 φ uu ( z k , η k )(1+ 2 α)/p0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadIhadaahaaWcbeqa aiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0IaamiEamaaCaaaleqaba GaaGOkaaaakiab=vIiqjabgUcaRiab=vIiqjaadwhadaahaaWcbeqa aiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0IaamyDamaaCaaaleqaba GaaGOkaaaakiab=vIiqjabgsMiJkaadghadaWgaaWcbaGaaGymaiaa dUgaaeqaaOGae8xjIaLaamiEamaaCaaaleqabaGaam4Aaaaakiabgk HiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucqGHRaWkcaWG XbWaaSbaaSqaaiaaikdacaWGRbaabeaakiab=vIiqjaadwhadaahaa WcbeqaaiaadUgaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaa aOGae8xjIaLaaGilaaqaaiaadghadaWgaaWcbaGaaGymaiaadUgaae qaaOGaaGypaiab=vIiqjaadgeacaaIOaGaamOEamaaCaaaleqabaGa am4AaaaakiaaiMcacqGHsislcqGHhis0daahaaWcbeqaaiaaikdaaa GccqaHgpGAdaWgaaWcbaGaamiEaiaadIhaaeqaaOGaaGikaiabe67a 4naaCaaaleqabaGaam4AaaaakiaaiYcacaWG1bWaaWbaaSqabeaaca WGRbaaaOGaaGykaiab=vIiqjaaiIcacaaIXaGaey4kaSYaaOaaaeaa caaIYaaaleqaaOGaeqySdeMaaGykaiaai+cacaWGTbGaeyOKH4QaaG imaiaaiYcaaeaacaWGXbWaaSbaaSqaaiaaikdacaWGRbaabeaakiaa i2dacqWFLicucaWGcbGaaGikaiaadEhadaahaaWcbeqaaiaadUgaaa GccaaIPaGaeyOeI0Iaey4bIe9aaWbaaSqabeaacaaIYaaaaOGaeqOX dO2aaSbaaSqaaiaadwhacaWG1baabeaakiaaiIcacaWG6bWaaWbaaS qabeaacaWGRbaaaOGaaGilaiabeE7aOnaaCaaaleqabaGaam4Aaaaa kiaaiMcacqWFLicucaaIOaGaaGymaiabgUcaRmaakaaabaGaaGOmaa Wcbeaakiabeg7aHjaaiMcacaaIVaGaamiCaiabgkziUkaaicdacaaI Saaaaaaa@AAB0@ (5.8)

 где ξ k = z k θ( z k x * ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaW baaSqabeaacaWGRbaaaOGaaGypaiaadQhadaahaaWcbeqaaiaadUga aaGccqGHsislcqaH4oqCcaaIOaGaamOEamaaCaaaleqabaGaam4Aaa aakiabgkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccaaIPaaaaa@44D1@ , k1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgw MiZkaaigdaaaa@3968@ , η k = w k θ( w k u * ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aaW baaSqabeaacaWGRbaaaOGaaGypaiaadEhadaahaaWcbeqaaiaadUga aaGccqGHsislcqaH4oqCcaaIOaGaam4DamaaCaaaleqabaGaam4Aaa aakiabgkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccaaIPaaaaa@44B1@ , θ[0;1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdeNaey icI4SaaG4waiaaicdacaaI7aGaaGymaiaai2faaaa@3D37@ .

 Доказательство. Результаты и выкладки теоремы 4.1 здесь справедливы. Запишем неравенство (4.3) в форме

                      ( x k+1 v, x k+1 v)+( z k v,v x k+1 )β A k 1 φ x ( z k , u k ),v x k+1 , x k+1 v 2 ( z k v, x k+1 v)+β A k 1 φ x ( z k , u k ),v x k+1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaaiIcacaWG4bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaa kiabgkHiTiaadAhacaaISaGaamiEamaaCaaaleqabaGaam4AaiabgU caRiaaigdaaaGccqGHsislcaWG2bGaaGykaiabgUcaRiaaiIcacaWG 6bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamODaiaaiYcacaWG2b GaeyOeI0IaamiEamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGc caaIPaGaeyizImQaeqOSdi2aaeWaaeaacaWGbbWaa0baaSqaaiaadU gaaeaacqGHsislcaaIXaaaaOGaey4bIeTaeqOXdO2aaSbaaSqaaiaa dIhaaeqaaOGaaGikaiaadQhadaahaaWcbeqaaiaadUgaaaGccaaISa GaamyDamaaCaaaleqabaGaam4AaaaakiaaiMcacaaISaGaamODaiab gkHiTiaadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaaGcca GLOaGaayzkaaGaaGilaaqaaebbfv3ySLgzGueE0jxyaGqbaiab=vIi qjaadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0 IaamODaiab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgsMiJkaaiIca caWG6bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamODaiaaiYcaca WG4bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaa dAhacaaIPaGaey4kaSIaeqOSdi2aaeWaaeaacaWGbbWaa0baaSqaai aadUgaaeaacqGHsislcaaIXaaaaOGaey4bIeTaeqOXdO2aaSbaaSqa aiaadIhaaeqaaOGaaGikaiaadQhadaahaaWcbeqaaiaadUgaaaGcca aISaGaamyDamaaCaaaleqabaGaam4AaaaakiaaiMcacaaISaGaamOD aiabgkHiTiaadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaa GccaGLOaGaayzkaaGaaGilaaaaaaa@9F0B@

  k1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgw MiZkaaigdaaaa@3968@ , vQ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgI Giolaadgfaaaa@394C@ . Положим здесь v= x * Q * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaai2 dacaWG4bWaaWbaaSqabeaacaaIQaaaaOGaeyicI4SaamyuamaaBaaa leaacaaIQaaabeaaaaa@3CDB@  и сложим с неравенством A 1 ( x * ) φ x ( x * , u k ), x * x k+1 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGbbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGikaiaadIhadaah aaWcbeqaaiaaiQcaaaGccaaIPaGaey4bIeTaeqOXdO2aaSbaaSqaai aadIhaaeqaaOGaaGikaiaadIhadaahaaWcbeqaaiaaiQcaaaGccaaI SaGaamyDamaaCaaaleqabaGaam4AaaaakiaaiMcacaaISaGaamiEam aaCaaaleqabaGaaGOkaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaa dUgacqGHRaWkcaaIXaaaaaGccaGLOaGaayzkaaGaeyizImQaaGimaa aa@51C7@ , полученным из (3.1):

                 x k+1 x * 2 ( z k x * , x k+1 x * )+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyizImQaaGikaiaadQhadaah aaWcbeqaaiaadUgaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQa aaaOGaaGilaiaadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaa aOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOkaaaakiaaiMcacqGHRa Wkaaa@5497@

                            +β A k 1 φ x ( z k , u k ) A 1 ( x * ) φ x ( x * , u k ), x * x k+1 ,k1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaeq OSdi2aaeWaaeaacaWGbbWaa0baaSqaaiaadUgaaeaacqGHsislcaaI XaaaaOGaey4bIeTaeqOXdO2aaSbaaSqaaiaadIhaaeqaaOGaaGikai aadQhadaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaaCaaaleqa baGaam4AaaaakiaaiMcacqGHsislcaWGbbWaaWbaaSqabeaacqGHsi slcaaIXaaaaOGaaGikaiaadIhadaahaaWcbeqaaiaaiQcaaaGccaaI PaGaey4bIeTaeqOXdO2aaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadI hadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqabaGa am4AaaaakiaaiMcacaaISaGaamiEamaaCaaaleqabaGaaGOkaaaaki abgkHiTiaadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaaGc caGLOaGaayzkaaGaaGilaiaaywW7caWGRbGaeyyzImRaaGymaiaai6 caaaa@67A2@

 Здесь в правой части с учётом (5.6) вынесем A k 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaDa aaleaacaWGRbaabaGaeyOeI0IaaGymaaaaaaa@3982@ , a во втором скалярном произведении воспользуемся формулой Лагранжа. Получим

                 x k+1 x * 2 A k 1 A( z k ) z k x * , x k+1 x * + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyizImQaamyqamaaDaaaleaa caWGRbaabaGaeyOeI0IaaGymaaaakmaadeaabaaacaGLBbaacaWGbb GaaGikaiaadQhadaahaaWcbeqaaiaadUgaaaGccaaIPaWaaeWaaeaa caWG6bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamiEamaaCaaale qabaGaaGOkaaaakiaaiYcacaWG4bWaaWbaaSqabeaacaWGRbGaey4k aSIaaGymaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaaaki aawIcacaGLPaaacqGHRaWkaaa@5D9C@

                                               + β k 2 φ xx ( ξ k , u k )( z k x * ), x * x k+1 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaeq OSdi2aaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacqGHhis0daahaaWc beqaaiaaikdaaaGccqaHgpGAdaWgaaWcbaGaamiEaiaadIhaaeqaaO GaaGikaiabe67a4naaCaaaleqabaGaam4AaaaakiaaiYcacaWG1bWa aWbaaSqabeaacaWGRbaaaOGaaGykaiaaiIcacaWG6bWaaWbaaSqabe aacaWGRbaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOkaaaakiaa iMcacaaISaGaamiEamaaCaaaleqabaGaaGOkaaaakiabgkHiTiaadI hadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaaGccaGLOaGaayzk aaWaamGaaeaaaiaaw2faaiaai2daaaa@5826@

                                      = A k 1 A k β 2 φ xx ( ξ k , u k ) z k x * ), x * x k+1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaadg eadaqhaaWcbaGaam4AaaqaaiabgkHiTiaaigdaaaGcdaWabaqaaaGa ay5waaGaamyqamaaBaaaleaacaWGRbaabeaakiabgkHiTiabek7aIj abgEGirpaaCaaaleqabaGaaGOmaaaakiabeA8aQnaaBaaaleaacaWG 4bGaamiEaaqabaGccaaIOaGaeqOVdG3aaWbaaSqabeaacaWGRbaaaO GaaGilaiaadwhadaahaaWcbeqaaiaadUgaaaGccaaIPaWaamGaaeaa aiaaw2faamaabmaabaGaamOEamaaCaaaleqabaGaam4Aaaaakiabgk HiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccaaIPaGaaGilaiaadIha daahaaWcbeqaaiaaiQcaaaGccqGHsislcaWG4bWaaWbaaSqabeaaca WGRbGaey4kaSIaaGymaaaaaOGaayjkaiaawMcaaiaaiYcaaaa@5D8B@ (5.9)

 где

                                                 k1, ξ k = z k θ( z k x * ),θ[0;1]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgw MiZkaaigdacaaISaGaaGzbVlabe67a4naaCaaaleqabaGaam4Aaaaa kiaai2dacaWG6bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaeqiUde NaaGikaiaadQhadaahaaWcbeqaaiaadUgaaaGccqGHsislcaWG4bWa aWbaaSqabeaacaaIQaaaaOGaaGykaiaaiYcacaaMf8UaeqiUdeNaey icI4SaaG4waiaaicdacaaI7aGaaGymaiaai2facaaIUaaaaa@54C2@

 Пользуемся условиями теоремы, неравенством Коши-Буняковского, и учтём, что β k =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaadUgaaeqaaOGaaGypaiaaigdaaaa@3A40@  при kN MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgw MiZkaad6eaaaa@3980@ ; тогда из (5.9) получим

                        x k+1 x * 2 1 m A( z k ) 2 φ xx ( ξ k , u k ) z k x * x k+1 x * , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyizIm6aaSaaaeaacaaIXaaa baGaamyBaaaacqWFLicucaWGbbGaaGikaiaadQhadaahaaWcbeqaai aadUgaaaGccaaIPaGaeyOeI0Iaey4bIe9aaWbaaSqabeaacaaIYaaa aOGaeqOXdO2aaSbaaSqaaiaadIhacaWG4baabeaakiaaiIcacqaH+o aEdaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaaCaaaleqabaGa am4AaaaakiaaiMcacqWFLicucqWFLicucaWG6bWaaWbaaSqabeaaca WGRbaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOkaaaakiab=vIi qjab=vIiqjaadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaO GaeyOeI0IaamiEamaaCaaaleqabaGaaGOkaaaakiab=vIiqjaaiYca aaa@6D7F@

 или

                                     x k+1 x * 1 m A( z k ) 2 φ xx ( ξ k , u k ) z k x * . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaeyizIm6aaSaaaeaacaaIXaaabaGaamyBaaaacqWFLicucaWG bbGaaGikaiaadQhadaahaaWcbeqaaiaadUgaaaGccaaIPaGaeyOeI0 Iaey4bIe9aaWbaaSqabeaacaaIYaaaaOGaeqOXdO2aaSbaaSqaaiaa dIhacaWG4baabeaakiaaiIcacqaH+oaEdaahaaWcbeqaaiaadUgaaa GccaaISaGaamyDamaaCaaaleqabaGaam4AaaaakiaaiMcacqWFLicu cqWFLicucaWG6bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamiEam aaCaaaleqabaGaaGOkaaaakiab=vIiqjaai6caaaa@63C0@  (5.10)

 Последний сомножитель в правой части (5.10) оценим с помощью нерастягивающего свойства оператора проектирования и (5.1) в варианте первого соотношения (5.3),

                 z k x * = P Q ( x k +α y k ) P Q ( x * ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamOEamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucaaI9aGae8 xjIaLaamiuamaaBaaaleaacaWGrbaabeaakiaaiIcacaWG4bWaaWba aSqabeaacaWGRbaaaOGaey4kaSIaeqySdeMaamyEamaaCaaaleqaba Gaam4AaaaakiaaiMcacqGHsislcaWGqbWaaSbaaSqaaiaadgfaaeqa aOGaaGikaiaadIhadaahaaWcbeqaaiaaiQcaaaGccaaIPaGae8xjIa LaeyizImkaaa@56A5@

                                             x k x * +α y k (1+ 2 α) x k x * . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImAeeu uDJXwAKbsr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4A aaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucq GHRaWkcqaHXoqycqWFLicucaWG5bWaaWbaaSqabeaacaWGRbaaaOGa e8xjIaLaeyizImQaaGikaiaaigdacqGHRaWkdaGcaaqaaiaaikdaaS qabaGccqaHXoqycaaIPaGae8xjIaLaamiEamaaCaaaleqabaGaam4A aaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicuca aIUaaaaa@5977@ (5.11)

 После подстановки оценки (5.11) из (5.10) следует

                          x k+1 x * 1 m A( z k ) 2 φ xx ( ξ k , u k )(1+ 2 α) x k x * . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaeyizIm6aaSaaaeaacaaIXaaabaGaamyBaaaacqWFLicucaWG bbGaaGikaiaadQhadaahaaWcbeqaaiaadUgaaaGccaaIPaGaeyOeI0 Iaey4bIe9aaWbaaSqabeaacaaIYaaaaOGaeqOXdO2aaSbaaSqaaiaa dIhacaWG4baabeaakiaaiIcacqaH+oaEdaahaaWcbeqaaiaadUgaaa GccaaISaGaamyDamaaCaaaleqabaGaam4AaaaakiaaiMcacqWFLicu caaIOaGaaGymaiabgUcaRmaakaaabaGaaGOmaaWcbeaakiabeg7aHj aaiMcacqWFLicucaWG4bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0Ia amiEamaaCaaaleqabaGaaGOkaaaakiab=vIiqjaai6caaaa@6940@ (5.12)

 Из (5.12) следует оценка

                                                               x k+1 x * q 1k x k x * , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaeyizImQaamyCamaaBaaaleaacaaIXaGaam4AaaqabaGccqWF LicucaWG4bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamiEamaaCa aaleqabaGaaGOkaaaakiab=vIiqjaaiYcaaaa@4FD4@ (5.13)

 где q 1k = 1+ 2 α m A( z k ) 2 φ xx ( ξ k , u k )0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaaIXaGaam4AaaqabaGccaaI9aWaaSaaaeaacaaIXaGaey4k aSYaaOaaaeaacaaIYaaaleqaaOGaeqySdegabaGaamyBaaaarqqr1n gBPrgifHhDYfgaiuaacqWFLicucaWGbbGaaGikaiaadQhadaahaaWc beqaaiaadUgaaaGccaaIPaGaeyOeI0Iaey4bIe9aaWbaaSqabeaaca aIYaaaaOGaeqOXdO2aaSbaaSqaaiaadIhacaWG4baabeaakiaaiIca cqaH+oaEdaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaaCaaale qabaGaam4AaaaakiaaiMcacqWFLicucqGHsgIRcaaIWaaaaa@5AF9@  при k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@ , ибо ввиду (5.4) и (5.6) при k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@

                                A( z k ) 2 φ xx ( ξ k , u k )A( z k ) 2 φ xx ( x * , u k )0+. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyqaiaaiIcacaWG6bWaaWbaaSqabeaa caWGRbaaaOGaaGykaiabgkHiTiabgEGirpaaCaaaleqabaGaaGOmaa aakiabeA8aQnaaBaaaleaacaWG4bGaamiEaaqabaGccaaIOaGaeqOV dG3aaWbaaSqabeaacaWGRbaaaOGaaGilaiaadwhadaahaaWcbeqaai aadUgaaaGccaaIPaGae8xjIaLaeyizImQae8xjIaLaamyqaiaaiIca caWG6bWaaWbaaSqabeaacaWGRbaaaOGaaGykaiabgkHiTiabgEGirp aaCaaaleqabaGaaGOmaaaakiabeA8aQnaaBaaaleaacaWG4bGaamiE aaqabaGccaaIOaGaamiEamaaCaaaleqabaGaaGOkaaaakiaaiYcaca WG1bWaaWbaaSqabeaacaWGRbaaaOGaaGykaiab=vIiqjabgkziUkaa icdacqGHRaWkcaaIUaaaaa@698B@  (5.14)

 Теперь преобразуем неравенство (4.5).

               u k+1 u,u u k+1 +(u w k ,u u k+1 )λ B k 1 φ u ( x k+1 , w k ),u u k+1 0, u k+1 u 2 (u w k ,u u k+1 )λ B k 1 φ u ( x k+1 , w k ),u u k+1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaamaabmaabaGaamyDamaaCaaaleqabaGaam4AaiabgUcaRiaaigda aaGccqGHsislcaWG1bGaaGilaiaadwhacqGHsislcaWG1bWaaWbaaS qabeaacaWGRbGaey4kaSIaaGymaaaaaOGaayjkaiaawMcaaiabgUca RiaaiIcacaWG1bGaeyOeI0Iaam4DamaaCaaaleqabaGaam4Aaaaaki aaiYcacaWG1bGaeyOeI0IaamyDamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccaaIPaGaeyOeI0Iaeq4UdW2aaeWaaeaacaWGcbWaa0 baaSqaaiaadUgaaeaacqGHsislcaaIXaaaaOGaey4bIeTaeqOXdO2a aSbaaSqaaiaadwhaaeqaaOGaaGikaiaadIhadaahaaWcbeqaaiaadU gacqGHRaWkcaaIXaaaaOGaaGilaiaadEhadaahaaWcbeqaaiaadUga aaGccaaIPaGaaGilaiaadwhacqGHsislcaWG1bWaaWbaaSqabeaaca WGRbGaey4kaSIaaGymaaaaaOGaayjkaiaawMcaaiabgwMiZkaaicda caaISaaabaqeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamyDamaaCa aaleqabaGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG1bGae8xj Ia1aaWbaaSqabeaacaaIYaaaaOGaeyizImQaaGikaiaadwhacqGHsi slcaWG3bWaaWbaaSqabeaacaWGRbaaaOGaaGilaiaadwhacqGHsisl caWG1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiaaiMcacq GHsislcqaH7oaBdaqadaqaaiaadkeadaqhaaWcbaGaam4Aaaqaaiab gkHiTiaaigdaaaGccqGHhis0cqaHgpGAdaWgaaWcbaGaamyDaaqaba GccaaIOaGaamiEamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGc caaISaGaam4DamaaCaaaleqabaGaam4AaaaakiaaiMcacaaISaGaam yDaiabgkHiTiaadwhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaa aaGccaGLOaGaayzkaaGaaGOlaaaaaaa@A42C@

 Положим здесь u= u * U * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2 dacaWG1bWaaWbaaSqabeaacaaIQaaaaOGaeyicI4SaamyvamaaCaaa leqabaGaaGOkaaaaaaa@3CDC@  и сложим с неравенством λ B 1 ( u * ) φ u ( x k+1 , u * ), u * u k+1 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aae WaaeaacaWGcbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGikaiaa dwhadaahaaWcbeqaaiaaiQcaaaGccaaIPaGaey4bIeTaeqOXdO2aaS baaSqaaiaadwhaaeqaaOGaaGikaiaadIhadaahaaWcbeqaaiaadUga cqGHRaWkcaaIXaaaaOGaaGilaiaadwhadaahaaWcbeqaaiaaiQcaaa GccaaIPaGaaGilaiaadwhadaahaaWcbeqaaiaaiQcaaaGccqGHsisl caWG1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaaaOGaayjkai aawMcaaiabgwMiZkaaicdaaaa@551E@ , полученным из (3.2):

                          u k+1 u 2 ( w k u * , u k+1 u * )+ +λ B k 1 φ u ( x k+1 , w k ) B 1 ( u * ) φ u ( x k+1 , u * ), u k+1 u * ,k1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadwhadaahaaWcbeqa aiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0IaamyDaiab=vIiqnaaCa aaleqabaGaaGOmaaaakiabgsMiJkaaiIcacaWG3bWaaWbaaSqabeaa caWGRbaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaaGOkaaaakiaaiY cacaWG1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHi TiaadwhadaahaaWcbeqaaiaaiQcaaaGccaaIPaGaey4kaScabaGaey 4kaSIaeq4UdW2aaeWaaeaacaWGcbWaa0baaSqaaiaadUgaaeaacqGH sislcaaIXaaaaOGaey4bIeTaeqOXdO2aaSbaaSqaaiaadwhaaeqaaO GaaGikaiaadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGa aGilaiaadEhadaahaaWcbeqaaiaadUgaaaGccaaIPaGaeyOeI0Iaam OqamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaaiIcacaWG1bWaaWba aSqabeaacaaIQaaaaOGaaGykaiabgEGirlabeA8aQnaaBaaaleaaca WG1baabeaakiaaiIcacaWG4bWaaWbaaSqabeaacaWGRbGaey4kaSIa aGymaaaakiaaiYcacaWG1bWaaWbaaSqabeaacaaIQaaaaOGaaGykai aaiYcacaWG1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiab gkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaaakiaawIcacaGLPaaaca aISaGaaGjbVlaadUgacqGHLjYScaaIXaGaaGOlaaaaaaa@8891@

 С учётом (5.7), в правой части этого неравенства вынесем B k 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaDa aaleaacaWGRbaabaGaeyOeI0IaaGymaaaaaaa@3983@  и применим во второй скобке формулу Лагранжа, затем вынесем скалярное произведение и применим неравенство Коши-Буняковского:

                 u k+1 u 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG1bGae8xjIa1aaWbaaSqabeaacaaIYa aaaOGaeyizImkaaa@4518@

                 B k 1 B k ( w k u * , u k+1 u * ) λ k 2 φ uu ( z k , η k )( w k u * ), u k+1 u * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam OqamaaDaaaleaacaWGRbaabaGaeyOeI0IaaGymaaaakmaadmaabaGa amOqamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG3bWaaWbaaSqabe aacaWGRbaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaaGOkaaaakiaa iYcacaWG1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgk HiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccaaIPaGaeyOeI0Iaeq4U dW2aaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacqGHhis0daahaaWcbe qaaiaaikdaaaGccqaHgpGAdaWgaaWcbaGaamyDaiaadwhaaeqaaOGa aGikaiaadQhadaahaaWcbeqaaiaadUgaaaGccaaISaGaeq4TdG2aaW baaSqabeaacaWGRbaaaOGaaGykaiaaiIcacaWG3bWaaWbaaSqabeaa caWGRbaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaaGOkaaaakiaaiM cacaaISaGaamyDamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGc cqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaaGccaGLOaGaayzkaa aacaGLBbGaayzxaaGaeyizImkaaa@6EDA@

                                        B k 1 ( w k u * , u k+1 u * ) B k λ k 2 φ uu ( z k , η k ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam OqamaaDaaaleaacaWGRbaabaGaeyOeI0IaaGymaaaakiaaiIcacaWG 3bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamyDamaaCaaaleqaba GaaGOkaaaakiaaiYcacaWG1bWaaWbaaSqabeaacaWGRbGaey4kaSIa aGymaaaakiabgkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccaaIPa WaaeWaaeaacaWGcbWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0Iaeq4U dW2aaSbaaSqaaiaadUgaaeqaaOGaey4bIe9aaWbaaSqabeaacaaIYa aaaOGaeqOXdO2aaSbaaSqaaiaadwhacaWG1baabeaakiaaiIcacaWG 6bWaaWbaaSqabeaacaWGRbaaaOGaaGilaiabeE7aOnaaCaaaleqaba Gaam4AaaaakiaaiMcaaiaawIcacaGLPaaacqGHKjYOaaa@5F48@

                                    1 p w k u * u k+1 u * B k λ k 2 φ uu ( z k , η k ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaS aaaeaacaaIXaaabaGaamiCaaaarqqr1ngBPrgifHhDYfgaiuaacqWF LicucaWG3bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamyDamaaCa aaleqabaGaaGOkaaaakiab=vIiqjabgwSixlab=vIiqjaadwhadaah aaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0IaamyDamaaCa aaleqabaGaaGOkaaaakiab=vIiqjabgwSixlab=vIiqjaadkeadaWg aaWcbaGaam4AaaqabaGccqGHsislcqaH7oaBdaWgaaWcbaGaam4Aaa qabaGccqGHhis0daahaaWcbeqaaiaaikdaaaGccqaHgpGAdaWgaaWc baGaamyDaiaadwhaaeqaaOGaaGikaiaadQhadaahaaWcbeqaaiaadU gaaaGccaaISaGaeq4TdG2aaWbaaSqabeaacaWGRbaaaOGaaGykaiab =vIiqjaaiYcaaaa@68A7@

                                                k1, η k = w k θ( w k u * ),θ[0;1]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgw MiZkaaigdacaaISaGaaGzbVlabeE7aOnaaCaaaleqabaGaam4Aaaaa kiaai2dacaWG3bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaeqiUde NaaGikaiaadEhadaahaaWcbeqaaiaadUgaaaGccqGHsislcaWG1bWa aWbaaSqabeaacaaIQaaaaOGaaGykaiaaiYcacaaMf8UaeqiUdeNaey icI4SaaG4waiaaicdacaaI7aGaaGymaiaai2facaaIUaaaaa@54A2@

Отсюда следует,

                                      u k+1 u * 1 p w k u * B k λ 2 φ uu ( z k , η k ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaeyizIm6aaSaaaeaacaaIXaaabaGaamiCaaaacqWFLicucaWG 3bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamyDamaaCaaaleqaba GaaGOkaaaakiab=vIiqjabgwSixlab=vIiqjaadkeadaWgaaWcbaGa am4AaaqabaGccqGHsislcqaH7oaBcqGHhis0daahaaWcbeqaaiaaik daaaGccqaHgpGAdaWgaaWcbaGaamyDaiaadwhaaeqaaOGaaGikaiaa dQhadaahaaWcbeqaaiaadUgaaaGccaaISaGaeq4TdG2aaWbaaSqabe aacaWGRbaaaOGaaGykaiab=vIiqjaai6caaaa@6539@   (5.15)

 Сомножитель в правой части (5.15) оценим с помощью нерастягивающего свойства оператора проектирования и (5.1) в варианте первого из неравенств (5.3),

                 w k u * = P U (u+α v k ) P U ( u * ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaam4DamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucaaI9aGae8 xjIaLaamiuamaaBaaaleaacaWGvbaabeaakiaaiIcacaWG1bGaey4k aSIaeqySdeMaamODamaaCaaaleqabaGaam4AaaaakiaaiMcacqGHsi slcaWGqbWaaSbaaSqaaiaadwfaaeqaaOGaaGikaiaadwhadaahaaWc beqaaiaaiQcaaaGccaaIPaGae8xjIaLaeyizImkaaa@5577@

                                              u k u * +α v k (1+ 2 α) u k u * . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImAeeu uDJXwAKbsr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaam4A aaaakiabgkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucq GHRaWkcqaHXoqycqWFLicucaWG2bWaaWbaaSqabeaacaWGRbaaaOGa e8xjIaLaeyizImQaaGikaiaaigdacqGHRaWkdaGcaaqaaiaaikdaaS qabaGccqaHXoqycaaIPaGae8xjIaLaamyDamaaCaaaleqabaGaam4A aaaakiabgkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicuca aIUaaaaa@5968@ (5.16)

 Подставим оценку (5.16) в (5.15) и учтём, что λ k =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaadUgaaeqaaOGaaGypaiaaigdaaaa@3A53@  при kN MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgw MiZkaad6eaaaa@3980@ ; тогда из (5.15) получим

                               u k+1 u * 1 p (1+ 2 α) u k u * B k 2 φ uu ( z k , η k ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaeyizIm6aaSaaaeaacaaIXaaabaGaamiCaaaacaaIOaGaaGym aiabgUcaRmaakaaabaGaaGOmaaWcbeaakiabeg7aHjaaiMcacqWFLi cucaWG1bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamyDamaaCaaa leqabaGaaGOkaaaakiab=vIiqjab=vIiqjaadkeadaWgaaWcbaGaam 4AaaqabaGccqGHsislcqGHhis0daahaaWcbeqaaiaaikdaaaGccqaH gpGAdaWgaaWcbaGaamyDaiaadwhaaeqaaOGaaGikaiaadQhadaahaa WcbeqaaiaadUgaaaGccaaISaGaeq4TdG2aaWbaaSqabeaacaWGRbaa aOGaaGykaiab=vIiqjaai6caaaa@66BB@ (5.17)

 Из (5.17) следует оценка

                                              u k+1 u * q 2k u k u * , q 2k 0,k, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaeyizImQaamyCamaaBaaaleaacaaIYaGaam4AaaqabaGccqWF LicucaWG1bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamyDamaaCa aaleqabaGaaGOkaaaakiab=vIiqjaaiYcacaWGXbWaaSbaaSqaaiaa ikdacaWGRbaabeaakiabgkziUkaaicdacaaISaGaaGjbVlaadUgacq GHsgIRcqGHEisPcaaISaaaaa@5C8F@ (5.18)

 где q 2k = 1+ 2 α p B k 2 φ uu ( z k , η k )0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaaIYaGaam4AaaqabaGccaaI9aWaaSaaaeaacaaIXaGaey4k aSYaaOaaaeaacaaIYaaaleqaaOGaeqySdegabaGaamiCaaaarqqr1n gBPrgifHhDYfgaiuaacqWFLicucaWGcbWaaSbaaSqaaiaadUgaaeqa aOGaeyOeI0Iaey4bIe9aaWbaaSqabeaacaaIYaaaaOGaeqOXdO2aaS baaSqaaiaadwhacaWG1baabeaakiaaiIcacaWG6bWaaWbaaSqabeaa caWGRbaaaOGaaGilaiabeE7aOnaaCaaaleqabaGaam4AaaaakiaaiM cacqWFLicucqGHsgIRcaaIWaaaaa@5881@  при k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@ , ибо ввиду (5.5) и (5.7) при k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@  

                                        B k 2 φ uu ( z k , η k ) B k 2 φ uu ( z k , u * )0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamOqamaaBaaaleaacaWGRbaabeaakiab gkHiTiabgEGirpaaCaaaleqabaGaaGOmaaaakiabeA8aQnaaBaaale aacaWG1bGaamyDaaqabaGccaaIOaGaamOEamaaCaaaleqabaGaam4A aaaakiaaiYcacqaH3oaAdaahaaWcbeqaaiaadUgaaaGccaaIPaGae8 xjIaLaeyizImQae8xjIaLaamOqamaaBaaaleaacaWGRbaabeaakiab gkHiTiabgEGirpaaCaaaleqabaGaaGOmaaaakiabeA8aQnaaBaaale aacaWG1bGaamyDaaqabaGccaaIOaGaamOEamaaCaaaleqabaGaam4A aaaakiaaiYcacaWG1bWaaWbaaSqabeaacaaIQaaaaOGaaGykaiab=v IiqjabgkziUkaaicdacaaIUaaaaa@63C5@  (5.19)

 Сложив неравенства (5.13) и (5.18), получим доказываемую оценку

      x k+1 x * + u k+1 u * q 1k x k x * + q 2k u k u * , q 1k 0, q 2k 0,k. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabeqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadIhadaahaaWcbeqa aiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0IaamiEamaaCaaaleqaba GaaGOkaaaakiab=vIiqjabgUcaRiab=vIiqjaadwhadaahaaWcbeqa aiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0IaamyDamaaCaaaleqaba GaaGOkaaaakiab=vIiqjabgsMiJkaadghadaWgaaWcbaGaaGymaiaa dUgaaeqaaOGae8xjIaLaamiEamaaCaaaleqabaGaam4Aaaaakiabgk HiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucqGHRaWkcaWG XbWaaSbaaSqaaiaaikdacaWGRbaabeaakiab=vIiqjaadwhadaahaa WcbeqaaiaadUgaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaa aOGae8xjIaLaaGilaiaaysW7caWGXbWaaSbaaSqaaiaaigdacaWGRb aabeaakiabgkziUkaaicdacaaISaGaaGjbVlaadghadaWgaaWcbaGa aGOmaiaadUgaaeqaaOGaeyOKH4QaaGimaiaaiYcacaaMe8Uaam4Aai abgkziUkabg6HiLkaai6caaaaaaa@7A84@

Доказательство завершено.

Замечание 5.2. Заметим следующее.

1) Если принять q k =max{ q 1k ; q 2k } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaWGRbaabeaakiaai2daciGGTbGaaiyyaiaacIhacaaI7bGa amyCamaaBaaaleaacaaIXaGaam4AaaqabaGccaaI7aGaaGjcVlaadg hadaWgaaWcbaGaaGOmaiaadUgaaeqaaOGaaGyFaaaa@45BF@ , q k 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaWGRbaabeaakiabgkziUkaaicdaaaa@3ABA@ , k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@ , то вместо (5.8) можно записать

                                  x k+1 x * + u k+1 u * q k x k x * + u k u * , q k 0,k. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadIhadaahaaWcbeqa aiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0IaamiEamaaCaaaleqaba GaaGOkaaaakiab=vIiqjabgUcaRiab=vIiqjaadwhadaahaaWcbeqa aiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0IaamyDamaaCaaaleqaba GaaGOkaaaakiab=vIiqjabgsMiJkaadghadaWgaaWcbaGaam4Aaaqa baGcdaqadaqaaiab=vIiqjaadIhadaahaaWcbeqaaiaadUgaaaGccq GHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIaLaey4kaSIa e8xjIaLaamyDamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadwhada ahaaWcbeqaaiaaiQcaaaGccqWFLicuaiaawIcacaGLPaaacaaISaaa baGaaGjbVlaadghadaWgaaWcbaGaam4AaaqabaGccqGHsgIRcaaIWa GaaGilaiaaysW7caWGRbGaeyOKH4QaeyOhIuQaaGOlaaaaaaa@6FFF@

 2) Если вместо (5.13) и (5.18) сложим квадраты неравенств (5.13) и (5.18), то придём к неравенству

                            x k+1 x * 2 + u k+1 u * 2 q 1k 2 x k x * 2 + q 2k 2 u k u * 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xjIaLaamyDamaa CaaaleqabaGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaW baaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGa eyizImQaamyCamaaDaaaleaacaaIXaGaam4AaaqaaiaaikdaaaGccq WFLicucaWG4bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamiEamaa CaaaleqabaGaaGOkaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaaki abgUcaRiaadghadaqhaaWcbaGaaGOmaiaadUgaaeaacaaIYaaaaOGa e8xjIaLaamyDamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadwhada ahaaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGc caaISaaaaa@69A9@

 затем, при q k 2 =max{ q 1k 2 ; q 2k 2 } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaDa aaleaacaWGRbaabaGaaGOmaaaakiaai2daciGGTbGaaiyyaiaacIha caaI7bGaamyCamaaDaaaleaacaaIXaGaam4AaaqaaiaaikdaaaGcca aI7aGaaGjcVlaadghadaqhaaWcbaGaaGOmaiaadUgaaeaacaaIYaaa aOGaaGyFaaaa@47F6@ , получим вместо (5.8)

                                        ρ 2 ( x k+1 , u k+1 ) q k 2 ρ 2 ( x k , u k ), q k 0+,k, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaW baaSqabeaacaaIYaaaaOGaaGikaiaadIhadaahaaWcbeqaaiaadUga cqGHRaWkcaaIXaaaaOGaaGilaiaadwhadaahaaWcbeqaaiaadUgacq GHRaWkcaaIXaaaaOGaaGykaiabgsMiJkaadghadaqhaaWcbaGaam4A aaqaaiaaikdaaaGccqaHbpGCdaahaaWcbeqaaiaaikdaaaGccaaIOa GaamiEamaaCaaaleqabaGaam4AaaaakiaaiYcacaWG1bWaaWbaaSqa beaacaWGRbaaaOGaaGykaiaaiYcacaaMf8UaamyCamaaBaaaleaaca WGRbaabeaakiabgkziUkaaicdacqGHRaWkcaaISaGaaGjbVlaadUga cqGHsgIRcqGHEisPcaaISaaaaa@5F15@

 где обозначено ρ 2 ( x k , u k )= x k x * 2 + u k u * 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaW baaSqabeaacaaIYaaaaOGaaGikaiaadIhadaahaaWcbeqaaiaadUga aaGccaaISaGaamyDamaaCaaaleqabaGaam4AaaaakiaaiMcacaaI9a qeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGa am4AaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLi cudaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqWFLicucaWG1bWaaWba aSqabeaacaWGRbaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaaGOkaa aakiab=vIiqnaaCaaaleqabaGaaGOmaaaaaaa@5587@ .

6.      Оценка квадратичной скорости сходимости ПОДЭМКСМ

При дополнительном условии относительно операторов A k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGRbaabeaaaaa@37D9@ , B k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGRbaabeaaaaa@37DA@  получим оценку квадратичной сходимости ПОДЭМКCМ (2.1). Воспользуемся обобщением неравенства из работы [15]. Предположим, что константы c 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIXaaabeaakiaai6dacaaIWaaaaa@3952@ , c 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaai6dacaaIWaaaaa@3953@  и число N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36CA@  таковы, что kN MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jbVlaadUgacqGHLjYScaWGobaaaa@3BDD@  имеют место неравенства

                                     A( z k ) 2 φ xx ( x * , u k ) c 1 z k x * , u k E m , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyqaiaaiIcacaWG6bWaaWbaaSqabeaa caWGRbaaaOGaaGykaiabgkHiTiabgEGirpaaCaaaleqabaGaaGOmaa aakiabeA8aQnaaBaaaleaacaWG4bGaamiEaaqabaGccaaIOaGaamiE amaaCaaaleqabaGaaGOkaaaakiaaiYcacaWG1bWaaWbaaSqabeaaca WGRbaaaOGaaGykaiab=vIiqjabgsMiJkaadogadaWgaaWcbaGaaGym aaqabaGccqWFLicucaWG6bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0 IaamiEamaaCaaaleqabaGaaGOkaaaakiab=vIiqjaaiYcacaaMf8Ua eyiaIiIaaGjbVlaadwhadaahaaWcbeqaaiaadUgaaaGccqGHiiIZca WGfbWaaWbaaSqabeaacaWGTbaaaOGaaGilaaaa@6443@ (6.1)

                                  B( w k ) 2 φ uu ( x k , u * ) c 2 w k u * ), x k E n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamOqaiaaiIcacaWG3bWaaWbaaSqabeaa caWGRbaaaOGaaGykaiabgkHiTiabgEGirpaaCaaaleqabaGaaGOmaa aakiabeA8aQnaaBaaaleaacaWG1bGaamyDaaqabaGccaaIOaGaamiE amaaCaaaleqabaGaam4AaaaakiaaiYcacaWG1bWaaWbaaSqabeaaca aIQaaaaOGaaGykaiab=vIiqjabgsMiJkaadogadaWgaaWcbaGaaGOm aaqabaGccqWFLicucaWG3bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0 IaamyDamaaCaaaleqabaGaaGOkaaaakiaaiMcacqWFLicucaaISaGa aGzbVlabgcGiIiaaysW7caWG4bWaaWbaaSqabeaacaWGRbaaaOGaey icI4SaamyramaaCaaaleqabaGaamOBaaaakiaai6caaaa@64EF@ (6.2)

 Теорема 6.1. Пусть выполнены все условия теорем 4.1 и 5.1, неравенства (6.1), (6.2). Тогда последовательность { x k , u k } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadI hadaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaaCaaaleqabaGa am4Aaaaakiaai2haaaa@3CFE@  ПОДЭМКСМ (2.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ (2.4), (4.1) с квадратичной скоростью сходится к решению { x * , u * } W * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadI hadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqabaGa aGOkaaaakiaai2hacqGHiiIZcaWGxbWaaSbaaSqaaiaaiQcaaeqaaa aa@3FC6@  задачи (1.1), причем

                                          x k+1 x * + u k+1 u * c ρ 2 ( x k , u k ),kN, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaey4kaSIae8xjIaLaamyDamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaeyizImQaam4yaiabeg8aYnaaCaaaleqabaGaaGOmaaaakiaa iIcacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaaGilaiaadwhadaahaa WcbeqaaiaadUgaaaGccaaIPaGaaGilaiaaysW7caWGRbGaeyyzImRa amOtaiaaiYcaaaa@5F3D@ (6.3)

 где c=(1+ 2 α ) 2 c 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaai2 dacaaIOaGaaGymaiabgUcaRmaakaaabaGaaGOmaaWcbeaakiabeg7a HjaaiMcadaahaaWcbeqaaiaaikdaaaGccaWGJbWaaSbaaSqaaiaaio daaeqaaaaa@3FEC@ , c 3 =max{ c 1 /m; c 2 /p} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIZaaabeaakiaai2daciGGTbGaaiyyaiaacIhacaaI7bGa am4yamaaBaaaleaacaaIXaaabeaakiaai+cacaWGTbGaaG4oaiaado gadaWgaaWcbaGaaGOmaaqabaGccaaIVaGaamiCaiaai2haaaa@454A@ .

 Доказательство. Заметим, что при условиях теоремы 6.1 все выкладки теорем 4.1, и 5.1, а также неравенства (5.11), (5.12) и (5.16), (5.17) справедливы. Здесь сначала воспользуемся в (5.12) неравенствами из (5.11), (5.14) и (6.1),

                 A( z k ) 2 φ xx ( ξ k , u k )A( z k ) 2 φ xx ( x * , u k ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyqaiaaiIcacaWG6bWaaWbaaSqabeaa caWGRbaaaOGaaGykaiabgkHiTiabgEGirpaaCaaaleqabaGaaGOmaa aakiabeA8aQnaaBaaaleaacaWG4bGaamiEaaqabaGccaaIOaGaeqOV dG3aaWbaaSqabeaacaWGRbaaaOGaaGilaiaadwhadaahaaWcbeqaai aadUgaaaGccaaIPaGae8xjIaLaeyizImQae8xjIaLaamyqaiaaiIca caWG6bWaaWbaaSqabeaacaWGRbaaaOGaaGykaiabgkHiTiabgEGirp aaCaaaleqabaGaaGOmaaaakiabeA8aQnaaBaaaleaacaWG4bGaamiE aaqabaGccaaIOaGaamiEamaaCaaaleqabaGaaGOkaaaakiaaiYcaca WG1bWaaWbaaSqabeaacaWGRbaaaOGaaGykaiab=vIiqjabgsMiJcaa @66FF@

                                                  c 1 z k x * c 1 (1+ 2 α) x k x * . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam 4yamaaBaaaleaacaaIXaaabeaarqqr1ngBPrgifHhDYfgaiuaakiab =vIiqjaadQhadaahaaWcbeqaaiaadUgaaaGccqGHsislcaWG4bWaaW baaSqabeaacaaIQaaaaOGae8xjIaLaeyizImQaam4yamaaBaaaleaa caaIXaaabeaakiaaiIcacaaIXaGaey4kaSYaaOaaaeaacaaIYaaale qaaOGaeqySdeMaaGykaiab=vIiqjaadIhadaahaaWcbeqaaiaadUga aaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIaLaaG Olaaaa@564D@

Подставив эту оценку в (5.12), получим

                 x k+1 x * 1 m A( z k ) 2 φ xx ( x * , u k )(1+ 2 α) x k x * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaeyizIm6aaSaaaeaacaaIXaaabaGaamyBaaaacqWFLicucaWG bbGaaGikaiaadQhadaahaaWcbeqaaiaadUgaaaGccaaIPaGaeyOeI0 Iaey4bIe9aaWbaaSqabeaacaaIYaaaaOGaeqOXdO2aaSbaaSqaaiaa dIhacaWG4baabeaakiaaiIcacaWG4bWaaWbaaSqabeaacaaIQaaaaO GaaGilaiaadwhadaahaaWcbeqaaiaadUgaaaGccaaIPaGae8xjIaLa aGikaiaaigdacqGHRaWkdaGcaaqaaiaaikdaaSqabaGccqaHXoqyca aIPaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaaaakiabgkHiTiaa dIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucqGHKjYOaaa@693B@

                                                  c 1 1 m (1+ 2 α) 2 x k x * 2 ,kN. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam 4yamaaBaaaleaacaaIXaaabeaakmaalaaabaGaaGymaaqaaiaad2ga aaGaaGikaiaaigdacqGHRaWkdaGcaaqaaiaaikdaaSqabaGccqaHXo qycaaIPaWaaWbaaSqabeaacaaIYaaaaebbfv3ySLgzGueE0jxyaGqb aOGae8xjIaLaamiEamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadI hadaahaaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikda aaGccaaISaGaaGzbVlaadUgacqGHLjYScaWGobGaaGOlaaaa@54FC@ (6.4)

 Воспользуемся неравенствами из (5.16), (5.19) и (6.2),

                 B( w k ) 2 φ uu ( z k , ξ k )B( w k ) 2 φ uu ( z k , u * ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamOqaiaaiIcacaWG3bWaaWbaaSqabeaa caWGRbaaaOGaaGykaiabgkHiTiabgEGirpaaCaaaleqabaGaaGOmaa aakiabeA8aQnaaBaaaleaacaWG1bGaamyDaaqabaGccaaIOaGaamOE amaaCaaaleqabaGaam4AaaaakiaaiYcacqaH+oaEdaahaaWcbeqaai aadUgaaaGccaaIPaGae8xjIaLaeyizImQae8xjIaLaamOqaiaaiIca caWG3bWaaWbaaSqabeaacaWGRbaaaOGaaGykaiabgkHiTiabgEGirp aaCaaaleqabaGaaGOmaaaakiabeA8aQnaaBaaaleaacaWG1bGaamyD aaqabaGccaaIOaGaamOEamaaCaaaleqabaGaam4AaaaakiaaiYcaca WG1bWaaWbaaSqabeaacaaIQaaaaOGaaGykaiab=vIiqjabgsMiJcaa @66F6@

                                                 c 2 w k u * c 2 (1+ 2 α) u k u * , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam 4yamaaBaaaleaacaaIYaaabeaarqqr1ngBPrgifHhDYfgaiuaakiab =vIiqjaadEhadaahaaWcbeqaaiaadUgaaaGccqGHsislcaWG1bWaaW baaSqabeaacaaIQaaaaOGae8xjIaLaeyizImQaam4yamaaBaaaleaa caaIYaaabeaakiaaiIcacaaIXaGaey4kaSYaaOaaaeaacaaIYaaale qaaOGaeqySdeMaaGykaiab=vIiqjaadwhadaahaaWcbeqaaiaadUga aaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8xjIaLaaG ilaaaa@5641@

 и воспользуемся полученной оценкой в (5.17), тогда из (5.17) имеем

                 u k+1 u * 1 p (1+ 2 α) u k u * B( w k ) 2 φ uu ( z k , u * ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaeyizIm6aaSaaaeaacaaIXaaabaGaamiCaaaacaaIOaGaaGym aiabgUcaRmaakaaabaGaaGOmaaWcbeaakiabeg7aHjaaiMcacqWFLi cucaWG1bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamyDamaaCaaa leqabaGaaGOkaaaakiab=vIiqjab=vIiqjaadkeacaaIOaGaam4Dam aaCaaaleqabaGaam4AaaaakiaaiMcacqGHsislcqGHhis0daahaaWc beqaaiaaikdaaaGccqaHgpGAdaWgaaWcbaGaamyDaiaadwhaaeqaaO GaaGikaiaadQhadaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaa CaaaleqabaGaaGOkaaaakiaaiMcacqWFLicucqGHKjYOaaa@692C@

                                                  c 2 1 p (1+ 2 α) 2 u k u * 2 ,kN. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam 4yamaaBaaaleaacaaIYaaabeaakmaalaaabaGaaGymaaqaaiaadcha aaGaaGikaiaaigdacqGHRaWkdaGcaaqaaiaaikdaaSqabaGccqaHXo qycaaIPaWaaWbaaSqabeaacaaIYaaaaebbfv3ySLgzGueE0jxyaGqb aOGae8xjIaLaamyDamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadw hadaahaaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikda aaGccaaISaGaaGzbVlaadUgacqGHLjYScaWGobGaaGOlaaaa@54FA@

 Сложив это неравенство с (6.4), получим

                 x k+1 x * + u k+1 u * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaey4kaSIae8xjIaLaamyDamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaeyizImkaaa@4EC0@

                            (1+ 2 α) 2 c 1 x k x * 2 /m+ c 2 u k u * 2 /p ,kN. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG ikaiaaigdacqGHRaWkdaGcaaqaaiaaikdaaSqabaGccqaHXoqycaaI PaWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacaWGJbWaaSbaaSqaai aaigdaaeqaaebbfv3ySLgzGueE0jxyaGqbaOGae8xjIaLaamiEamaa CaaaleqabaGaam4AaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaiQ caaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIVaGaamyBaiab gUcaRiaadogadaWgaaWcbaGaaGOmaaqabaGccqWFLicucaWG1bWaaW baaSqabeaacaWGRbaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaaGOk aaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaai+cacaWGWbaaca GLOaGaayzkaaGaaGilaiaaywW7caWGRbGaeyyzImRaamOtaiaai6ca aaa@62FB@ (6.5)

 Здесь примем c 3 =max{ c 1 /m; c 2 /p} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIZaaabeaakiaai2daciGGTbGaaiyyaiaacIhacaaI7bGa am4yamaaBaaaleaacaaIXaaabeaakiaai+cacaWGTbGaaG4oaiaado gadaWgaaWcbaGaaGOmaaqabaGccaaIVaGaamiCaiaai2haaaa@454A@ ; c=(1+ 2 α ) 2 c 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaai2 dacaaIOaGaaGymaiabgUcaRmaakaaabaGaaGOmaaWcbeaakiabeg7a HjaaiMcadaahaaWcbeqaaiaaikdaaaGccaWGJbWaaSbaaSqaaiaaio daaeqaaaaa@3FEC@ . Тогда из (6.5) следует (6.3).

Доказательство завершено

Замечание 6.1. Можно доказать аналоги теорем 4.1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  6.1 для обоснования модификации ПОДЭМКCM (2.1), часто успешной для численных реализаций:

                       z k = P Q x k + α k y k /( y k ) , x k+1 = P Q z k β k A k 1 φ x ( z k , u k )/( φ x ( z k , u k )) , w k = P U u k + α k v k /( v k ) , u k+1 = P U w k + λ k B k 1 φ u ( x k+1 , w k )/( φ u ( x k+1 , w k )) ,k1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGaamOEamaaCaaaleqabaGaam4Aaaaakiaai2dacaWGqbWaaSba aSqaaiaadgfaaeqaaOWaamWaaeaacaWG4bWaaWbaaSqabeaacaWGRb aaaOGaey4kaSIaeqySde2aaSbaaSqaaiaadUgaaeqaaOGaamyEamaa CaaaleqabaGaam4Aaaaakiaai+cacaaIOaqeeuuDJXwAKbsr4rNCHb acfaGae8xjIaLaamyEamaaCaaaleqabaGaam4Aaaaakiab=vIiqjaa iMcaaiaawUfacaGLDbaacaaISaaabaGaamiEamaaCaaaleqabaGaam 4AaiabgUcaRiaaigdaaaGccaaI9aGaamiuamaaBaaaleaacaWGrbaa beaakmaadmaabaGaamOEamaaCaaaleqabaGaam4AaaaakiabgkHiTi abek7aInaaBaaaleaacaWGRbaabeaakiaadgeadaqhaaWcbaGaam4A aaqaaiabgkHiTiaaigdaaaGccqGHhis0cqaHgpGAdaWgaaWcbaGaam iEaaqabaGccaaIOaGaamOEamaaCaaaleqabaGaam4AaaaakiaaiYca caWG1bWaaWbaaSqabeaacaWGRbaaaOGaaGykaiaai+cacaaIOaGae8 xjIaLaey4bIeTaeqOXdO2aaSbaaSqaaiaadIhaaeqaaOGaaGikaiaa dQhadaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaaCaaaleqaba Gaam4AaaaakiaaiMcacqWFLicucaaIPaaacaGLBbGaayzxaaGaaGil aaqaaiaadEhadaahaaWcbeqaaiaadUgaaaGccaaI9aGaamiuamaaBa aaleaacaWGvbaabeaakmaadmaabaGaamyDamaaCaaaleqabaGaam4A aaaakiabgUcaRiabeg7aHnaaBaaaleaacaWGRbaabeaakiaadAhada ahaaWcbeqaaiaadUgaaaGccaaIVaGaaGikaiab=vIiqjaadAhadaah aaWcbeqaaiaadUgaaaGccqWFLicucaaIPaaacaGLBbGaayzxaaGaaG ilaaqaaiaadwhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGa aGypaiaadcfadaWgaaWcbaGaamyvaaqabaGcdaWadaqaaiaadEhada ahaaWcbeqaaiaadUgaaaGccqGHRaWkcqaH7oaBdaWgaaWcbaGaam4A aaqabaGccaWGcbWaa0baaSqaaiaadUgaaeaacqGHsislcaaIXaaaaO Gaey4bIeTaeqOXdO2aaSbaaSqaaiaadwhaaeqaaOGaaGikaiaadIha daahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaaGilaiaadEhada ahaaWcbeqaaiaadUgaaaGccaaIPaGaaG4laiaaiIcacqWFLicucqGH his0cqaHgpGAdaWgaaWcbaGaamyDaaqabaGccaaIOaGaamiEamaaCa aaleqabaGaam4AaiabgUcaRiaaigdaaaGccaaISaGaam4DamaaCaaa leqabaGaam4AaaaakiaaiMcacqWFLicucaaIPaaacaGLBbGaayzxaa GaaGilaiaaywW7caWGRbGaeyyzImRaaGymaiaaiYcaaaaaaa@C85A@

 где используются те же обозначения, что и в (2.1).

7.      Заключение

В данной статье доказаны: сходимость ПОДЭМКСМ (2.1) для решения седловых задач с выпукло-вогнутыми седловыми функциями с Липшицевыми частными градиентами и сверхлинейная, и квадратичная, скорости сходимости метода в случае дважды непрерывно дифференцируемых, а следовательно, сильно выпукло-вогнутых седловых функций при соответствующих дополнительных условиях. ПОДЭМКСМ (2.1) обладает преимуществами, присущими двум классам методов решения седловых и равновесных задач: обобщённым двухточечным экстраградиентным и квазиньютоновским. Такие методы представляют значительный научный и прикладной интерес. Методы с квадратичной скоростью сходимости для решения седловых задач являются большой редкостью, они ценны для науки и приложений, поэтому их разработка и исследование актуальны.

×

Об авторах

Валериан Григорьевич Малинов

Автор, ответственный за переписку.
Email: vgmalinov@mail.ru
ORCID iD: 0009-0007-1758-9770

канд. физ.-мат. наук, независимый исследователь

Россия

Список литературы

  1. Демьянов В.Ф., Певный А.Б. Численные методы разыскания седловых точек// Журнал вычислительной математики и математической физики. 1972. Т.12. № 5. С. 1099–1127.
  2. Корпелевич Г.М. Экстраполяционные градиентные методы и их связь с модифицированными функциями Лагранжа // Экономика и математические методы. 1983. Т. 19. Вып. 4. С. 694–703.
  3. Антипин А.С. Градиентный и экстраградиентный подходы в билинейном и равновесном программировании. М.: Изд-во ВЦ РАН, 2002. 131 c.
  4. Антипин А.С., Васильев Ф.П. О непрерывном методе минимизации в пространствах с переменной метрикой // Известия вузов. Математика. 1995. № 12 (403). С. 3–9.
  5. Амочкина Т.В. Непрерывный метод проекции градиента второго порядка с переменной метрикой// ЖВМ и МФ. 1997. Т. 37, № 10. С. 1174–1182.
  6. Малинов В.Г. О проекционном квазиньютоновском обобщённом двухшаговом методе минимизации и оптимизации траектории летательного аппарата // Журнал Средневолжского математического общества. 2010. Том 12, № 4. С. 37–48.
  7. Малинов В.Г. Проекционный обобщенный двухточечный экстраградиентный квазиньютоновский метод решения седловых и других задач // Журнал вычислительной математики и математической физики. 2020. Т. 60, № 2. С. 221–233.
  8. Malinov V.G. On the Extragradient projection method for saddle-point problems // VI Moscow International Conference on Operation Research (ORM2010). Moscow. October 19-23, 2010. Proceedings. pp. 207 – 209.
  9. Малинов В.Г. Версии двух проекционных двухшаговых методов для решения седловых и других задач // VII Московская международная конференция по исследованию операций (ORM2013). Москва, 15-19 октября 2013 г. Труды. Том II. Москва: ВЦ РАН, 2013. С. 25 – 27.
  10. Малинов В.Г. О версиях двух проекционных обобщённых двухшаговых экстраградиентных методов для равновесных и других задач // Прикладная математика и механика. Сборник научных трудов. Ульяновск. УлГТУ, 2014. С. 161 – 178.
  11. Малинов В.Г. Непрерывный проекционный обобщенный экстраградиентный квазиньютоновский метод второго порядка для решения седловых задач // Журнал вычислительной математики и математической физики. 2022. Т. 62, № 5. С. 777–789.
  12. Антипин А.С. Методы нелинейного программирования, основанные на прямой и двойственной модификации функции Лагранжа. М.: ВНИИ системных исследований, 1979. 74 с.
  13. Васильев Ф.П. Численные методы решения экстремальных задач. М.: Наука, 1988. 552 c.
  14. Карманов В.Г. Математическое программирование. М.: Наука, 1975. 272 c.
  15. Conn A.R., Gould N.I.M., Toint Ph.L. Convergence of quasi-Newton matrices generated by the symmetric rank one update // Mathematical Programming. 1991. Vol. 50, no. 2. pp. 177–195.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Журнал Средневолжского математического общества, 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».