Development of Autonomous Navigation System for Remote-Control Vehicles using Ultrasound Location Techniques
- Authors: Rudenko O.V.1, Shurup A.S.1
-
Affiliations:
- Lomonosov Moscow State University
- Issue: Vol 121, No 1 (2024): THEMED SECTION: FUNDAMENTAL PROBLEMS OF MANAGING UNMANNED VEHICLES IN A SMART CITY
- Pages: 93-100
- Section: THEMED SECTION: FUNDAMENTAL SCIENTIFIC RESEARCH IN THE FIELD OF NATURAL SCIENCES
- URL: https://ogarev-online.ru/1605-8070/article/view/303357
- DOI: https://doi.org/10.22204/2410-4639-2024-121-01-93-100
- ID: 303357
Cite item
Full Text
Abstract
Results of works on acoustic location methods applied to small airborne vehicles are presented. An experimental model has been developed with an original acoustic system for detecting and identifying obstacles based on analysis of diffraction and reflection of acoustic waves. Methods for active acoustic location have been developed, using triple correlation and properties of correlation function of chirp signals reflected from a rotating propeller. A prototype of mobile acoustic sodar has been created that implements the new methods of active location. Original methods for solving acoustic diffraction problems, based on a generalization of Sommerfeld integral and saddle-point method, as well as asymptotic formulas for two-dimensional Fourier integral have been regarded. Acoustic transition radiation has been studied. New spectral peculiarities of signals reflected from a moving airborne vehicle are established, taking into account interaction of self-radiation and probing signal on nonlinearity of moving boundary.
About the authors
Oleg V. Rudenko
Lomonosov Moscow State University
Author for correspondence.
Email: rudenko@acs366.phys.msu.ru
Аcademician
Russian Federation, 1–2 Leninskie Gory, GSP-1, Moscow, 119991, RussiaAndrei S. Shurup
Lomonosov Moscow State University
Email: shurup@physics.msu.ru
Russian Federation, 1–2 Leninskie Gory, GSP-1, Moscow, 119991, Russia
References
- T. Bailey H., Durrant-Whyte IEEE Robot. Automat. Magaz., 2006, 13(3), 108. doi: 10.1109/MRA.2006.1678144.
- J. Farlik, M. Kratky, J. Casar, V. Stary Sensors, 2019, 19(7), 1517. doi: 10.3390/s19071517.
- A. Sedunov, D. Haddad, H. Salloum, A. Sutin, N. Sedunov, A. Yakubovskiy In Proc. 2019 IEEE International Symposium on Technologies for Homeland Security (HST), USA, Woburn, 2019, pp. 1–7. doi: 10.1109/HST47167.2019.9032916.
- Z. Shi, X. Chang, C. Yang, Z. Wu and J. Wu IEEE Transact. Vehic. Technol., 2020, 69(3), 2731. doi: 10.1109/TVT.2020.2964110.
- O.V. Rudenko, V.A. Gusev Acoust. Phys., 2020, 66(6), 587. doi: 10.1134/S1063771020060093.
- V.L. Ginzburg, I.M. Frank Zhurnal eksperimentalnoy i teoreticheskoy fiziki [Russ. J. Exp. Theor. Phys.], 1946, 16(1), 15 (in Russian).
- V.I. Pavlov, A.I. Sukhorukov Uspekhi fizicheskikh nauk [Sov. Advances in Physical Sciences], 1985, 28, 784 (in Russian).
- A.I. Korolkov, K.S. Knyazeva, A.S. Shurup Acoust. Phys., 2020, 66(6), 676. doi: 10.1134/S1063771020060056.
- A.I. Korolkov, K.S. Knyazeva, A.S. Shurup Bulletin of the Russian Academy of Sciences: Physics, 2022, 86(1), 70. doi: 10.3103/s1062873822010154.
- A.W. Lohmann, B. Wirnitzer In Proc. IEEE, 1984, 72(7), 889. doi: 10.1109/PROC.1984.12946.
- A.V. Shanin, A.I. Korolkov, A.Y. Laptev In Abstr. Int. Conf. Days on Diffraction 2022 (RF, St. Petersburg, May 30 – June 3, 2022), RF, Saint Petersburg, PDMI Publ., 2022, p. 54.
- A.V. Shanin, A.I. Korolkov Wave Motion, 2020, 97, 102606. doi: 10.1016/j.wavemoti.2020.102606.
- A.V. Shanin, A.I. Korolkov Quart. Appl. Math, 2022, 80(2), 277. doi: 10.1090/qam/1612.
- O.I. Makarov, A.V. Shanin, A.I. Korolkov Acoust. Phys., 2023, 69(2), 143. doi: 10.1134/S1063771023600080.
- A.V. Shanin, A.I. Korolkov Quart. J. Mechan. Appl. Math., 2023, 76(1), 1. doi: 10.1093/qjmam/hbac017.
- M.A. Mironov, A.V. Shanin, A.I. Korolkov, K.S. Kniazeva Proc. Roy. Soc. A, 2021, 477, 20210530. doi: 10.1098/rspa.2021.0530.
- O.V. Rudenko, Yu.N. Makov Acoust. Phys., 2021, 67(1), 1. doi: 10.1134/S1063771021010036.
Supplementary files
