Choreographies in the n-vortex Problem


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the equations of motion of n vortices of equal circulation in the plane, in a disk and on a sphere. The vortices form a polygonal equilibrium in a rotating frame of reference. We use numerical continuation in a boundary value setting to determine the Lyapunov families of periodic orbits that arise from the polygonal relative equilibrium. When the frequency of a Lyapunov orbit and the frequency of the rotating frame have a rational relationship, the orbit is also periodic in the inertial frame. A dense set of Lyapunov orbits, with frequencies satisfying a Diophantine equation, corresponds to choreographies of n vortices. We include numerical results for all cases, for various values of n, and we provide key details on the computational approach.

作者简介

Renato Calleja

IIMAS

编辑信件的主要联系方式.
Email: calleja@mym.iimas.unam.mx
墨西哥, Apdo. Postal 20–726, C.P., México, D.F., 01000

Eusebius Doedel

Concordia University

Email: calleja@mym.iimas.unam.mx
加拿大, 1455 Boulevard De Maisonneuve West, Montreal, Quebec, H3G 1M8

Carlos García-Azpeitia

Facultad de Ciencias

Email: calleja@mym.iimas.unam.mx
墨西哥, Circuito Exterior S/N, Ciudad, C.P. 04510, Ciudad Universitaria, CDMX

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018