Choreographies in the n-vortex Problem
- Authors: Calleja R.C.1, Doedel E.J.2, García-Azpeitia C.3
-
Affiliations:
- IIMAS
- Concordia University
- Facultad de Ciencias
- Issue: Vol 23, No 5 (2018)
- Pages: 595-612
- Section: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/219073
- DOI: https://doi.org/10.1134/S156035471805009X
- ID: 219073
Cite item
Abstract
We consider the equations of motion of n vortices of equal circulation in the plane, in a disk and on a sphere. The vortices form a polygonal equilibrium in a rotating frame of reference. We use numerical continuation in a boundary value setting to determine the Lyapunov families of periodic orbits that arise from the polygonal relative equilibrium. When the frequency of a Lyapunov orbit and the frequency of the rotating frame have a rational relationship, the orbit is also periodic in the inertial frame. A dense set of Lyapunov orbits, with frequencies satisfying a Diophantine equation, corresponds to choreographies of n vortices. We include numerical results for all cases, for various values of n, and we provide key details on the computational approach.
Keywords
About the authors
Renato C. Calleja
IIMAS
Author for correspondence.
Email: calleja@mym.iimas.unam.mx
Mexico, Apdo. Postal 20–726, C.P., México, D.F., 01000
Eusebius J. Doedel
Concordia University
Email: calleja@mym.iimas.unam.mx
Canada, 1455 Boulevard De Maisonneuve West, Montreal, Quebec, H3G 1M8
Carlos García-Azpeitia
Facultad de Ciencias
Email: calleja@mym.iimas.unam.mx
Mexico, Circuito Exterior S/N, Ciudad, C.P. 04510, Ciudad Universitaria, CDMX
Supplementary files
