Choreographies in the n-vortex Problem


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider the equations of motion of n vortices of equal circulation in the plane, in a disk and on a sphere. The vortices form a polygonal equilibrium in a rotating frame of reference. We use numerical continuation in a boundary value setting to determine the Lyapunov families of periodic orbits that arise from the polygonal relative equilibrium. When the frequency of a Lyapunov orbit and the frequency of the rotating frame have a rational relationship, the orbit is also periodic in the inertial frame. A dense set of Lyapunov orbits, with frequencies satisfying a Diophantine equation, corresponds to choreographies of n vortices. We include numerical results for all cases, for various values of n, and we provide key details on the computational approach.

About the authors

Renato C. Calleja

IIMAS

Author for correspondence.
Email: calleja@mym.iimas.unam.mx
Mexico, Apdo. Postal 20–726, C.P., México, D.F., 01000

Eusebius J. Doedel

Concordia University

Email: calleja@mym.iimas.unam.mx
Canada, 1455 Boulevard De Maisonneuve West, Montreal, Quebec, H3G 1M8

Carlos García-Azpeitia

Facultad de Ciencias

Email: calleja@mym.iimas.unam.mx
Mexico, Circuito Exterior S/N, Ciudad, C.P. 04510, Ciudad Universitaria, CDMX

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.