Choreographies in the n-vortex Problem


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider the equations of motion of n vortices of equal circulation in the plane, in a disk and on a sphere. The vortices form a polygonal equilibrium in a rotating frame of reference. We use numerical continuation in a boundary value setting to determine the Lyapunov families of periodic orbits that arise from the polygonal relative equilibrium. When the frequency of a Lyapunov orbit and the frequency of the rotating frame have a rational relationship, the orbit is also periodic in the inertial frame. A dense set of Lyapunov orbits, with frequencies satisfying a Diophantine equation, corresponds to choreographies of n vortices. We include numerical results for all cases, for various values of n, and we provide key details on the computational approach.

Sobre autores

Renato Calleja

IIMAS

Autor responsável pela correspondência
Email: calleja@mym.iimas.unam.mx
México, Apdo. Postal 20–726, C.P., México, D.F., 01000

Eusebius Doedel

Concordia University

Email: calleja@mym.iimas.unam.mx
Canadá, 1455 Boulevard De Maisonneuve West, Montreal, Quebec, H3G 1M8

Carlos García-Azpeitia

Facultad de Ciencias

Email: calleja@mym.iimas.unam.mx
México, Circuito Exterior S/N, Ciudad, C.P. 04510, Ciudad Universitaria, CDMX

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018