Stability of the Polar Equilibria in a Restricted Three-Body Problem on the Sphere
- Authors: Andrade J.1, Vidal C.1
-
Affiliations:
- Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA
- Issue: Vol 23, No 1 (2018)
- Pages: 80-101
- Section: Article
- URL: https://ogarev-online.ru/1560-3547/article/view/218918
- DOI: https://doi.org/10.1134/S1560354718010070
- ID: 218918
Cite item
Abstract
In this paper we consider a symmetric restricted circular three-body problem on the surface S2 of constant Gaussian curvature κ = 1. This problem consists in the description of the dynamics of an infinitesimal mass particle attracted by two primaries with identical masses, rotating with constant angular velocity in a fixed parallel of radius a ∈ (0, 1). It is verified that both poles of S2 are equilibrium points for any value of the parameter a. This problem is modeled through a Hamiltonian system of two degrees of freedom depending on the parameter a. Using results concerning nonlinear stability, the type of Lyapunov stability (nonlinear) is provided for the polar equilibria, according to the resonances. It is verified that for the north pole there are two values of bifurcation (on the stability) \(a = \frac{{\sqrt {4 - \sqrt 2 } }}{2}\) and \(a = \sqrt {\frac{2}{3}} \), while the south pole has one value of bifurcation \(a = \frac{{\sqrt 3 }}{2}\).
About the authors
Jaime Andrade
Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA
Author for correspondence.
Email: jandrade@ubiobio.cl
Chile, Casilla 5–C, Concepción, VIII–región
Claudio Vidal
Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA
Email: jandrade@ubiobio.cl
Chile, Casilla 5–C, Concepción, VIII–región
Supplementary files
