Stability of the Polar Equilibria in a Restricted Three-Body Problem on the Sphere


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper we consider a symmetric restricted circular three-body problem on the surface S2 of constant Gaussian curvature κ = 1. This problem consists in the description of the dynamics of an infinitesimal mass particle attracted by two primaries with identical masses, rotating with constant angular velocity in a fixed parallel of radius a ∈ (0, 1). It is verified that both poles of S2 are equilibrium points for any value of the parameter a. This problem is modeled through a Hamiltonian system of two degrees of freedom depending on the parameter a. Using results concerning nonlinear stability, the type of Lyapunov stability (nonlinear) is provided for the polar equilibria, according to the resonances. It is verified that for the north pole there are two values of bifurcation (on the stability) \(a = \frac{{\sqrt {4 - \sqrt 2 } }}{2}\) and \(a = \sqrt {\frac{2}{3}} \), while the south pole has one value of bifurcation \(a = \frac{{\sqrt 3 }}{2}\).

作者简介

Jaime Andrade

Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA

编辑信件的主要联系方式.
Email: jandrade@ubiobio.cl
智利, Casilla 5–C, Concepción, VIII–región

Claudio Vidal

Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA

Email: jandrade@ubiobio.cl
智利, Casilla 5–C, Concepción, VIII–región

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018