Stability of the Polar Equilibria in a Restricted Three-Body Problem on the Sphere


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this paper we consider a symmetric restricted circular three-body problem on the surface S2 of constant Gaussian curvature κ = 1. This problem consists in the description of the dynamics of an infinitesimal mass particle attracted by two primaries with identical masses, rotating with constant angular velocity in a fixed parallel of radius a ∈ (0, 1). It is verified that both poles of S2 are equilibrium points for any value of the parameter a. This problem is modeled through a Hamiltonian system of two degrees of freedom depending on the parameter a. Using results concerning nonlinear stability, the type of Lyapunov stability (nonlinear) is provided for the polar equilibria, according to the resonances. It is verified that for the north pole there are two values of bifurcation (on the stability) \(a = \frac{{\sqrt {4 - \sqrt 2 } }}{2}\) and \(a = \sqrt {\frac{2}{3}} \), while the south pole has one value of bifurcation \(a = \frac{{\sqrt 3 }}{2}\).

Авторлар туралы

Jaime Andrade

Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA

Хат алмасуға жауапты Автор.
Email: jandrade@ubiobio.cl
Чили, Casilla 5–C, Concepción, VIII–región

Claudio Vidal

Grupo de Investigación en Sistemas Dinámicos y Aplicaciones-GISDA

Email: jandrade@ubiobio.cl
Чили, Casilla 5–C, Concepción, VIII–región

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018