A Sufficient Condition for the Similarity of a Polynomially Bounded Operator to a Contraction


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let T be a polynomially bounded operator and let ℳ be its invariant subspace. Assume that PM⊥T |M⊥\( {\left.{P}_{{\mathrm{\mathcal{M}}}^{\perp }}T\right|}_{{\mathrm{\mathcal{M}}}^{\perp }} \) is similar to a contraction, while θ(T|) = 0, where θ is a finite product of Blaschke products with simple zeros satisfying the Carleson interpolating condition (a Carleson–Newman product). Then T is similar to a contraction. It is mentioned that Le Merdy’s example shows that the assumption of polynomial boundedness cannot be replaced by the assumption of power boundedness.

作者简介

M. Gamal’

St. Petersburg Department of the Steklov Mathematical Institute

编辑信件的主要联系方式.
Email: gamal@pdmi.ras.ru
俄罗斯联邦, St. Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018