A Sufficient Condition for the Similarity of a Polynomially Bounded Operator to a Contraction
- Autores: Gamal’ M.F.1
-
Afiliações:
- St. Petersburg Department of the Steklov Mathematical Institute
- Edição: Volume 234, Nº 3 (2018)
- Páginas: 318-329
- Seção: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/241866
- DOI: https://doi.org/10.1007/s10958-018-4007-6
- ID: 241866
Citar
Resumo
Let T be a polynomially bounded operator and let ℳ be its invariant subspace. Assume that PM⊥T |M⊥\( {\left.{P}_{{\mathrm{\mathcal{M}}}^{\perp }}T\right|}_{{\mathrm{\mathcal{M}}}^{\perp }} \) is similar to a contraction, while θ(T|ℳ) = 0, where θ is a finite product of Blaschke products with simple zeros satisfying the Carleson interpolating condition (a Carleson–Newman product). Then T is similar to a contraction. It is mentioned that Le Merdy’s example shows that the assumption of polynomial boundedness cannot be replaced by the assumption of power boundedness.
Sobre autores
M. Gamal’
St. Petersburg Department of the Steklov Mathematical Institute
Autor responsável pela correspondência
Email: gamal@pdmi.ras.ru
Rússia, St. Petersburg
Arquivos suplementares
