A Sufficient Condition for the Similarity of a Polynomially Bounded Operator to a Contraction
- Авторлар: Gamal’ M.F.1
-
Мекемелер:
- St. Petersburg Department of the Steklov Mathematical Institute
- Шығарылым: Том 234, № 3 (2018)
- Беттер: 318-329
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/241866
- DOI: https://doi.org/10.1007/s10958-018-4007-6
- ID: 241866
Дәйексөз келтіру
Аннотация
Let T be a polynomially bounded operator and let ℳ be its invariant subspace. Assume that PM⊥T |M⊥\( {\left.{P}_{{\mathrm{\mathcal{M}}}^{\perp }}T\right|}_{{\mathrm{\mathcal{M}}}^{\perp }} \) is similar to a contraction, while θ(T|ℳ) = 0, where θ is a finite product of Blaschke products with simple zeros satisfying the Carleson interpolating condition (a Carleson–Newman product). Then T is similar to a contraction. It is mentioned that Le Merdy’s example shows that the assumption of polynomial boundedness cannot be replaced by the assumption of power boundedness.
Авторлар туралы
M. Gamal’
St. Petersburg Department of the Steklov Mathematical Institute
Хат алмасуға жауапты Автор.
Email: gamal@pdmi.ras.ru
Ресей, St. Petersburg
Қосымша файлдар
