Mean Width of Regular Polytopes and Expected Maxima of Correlated Gaussian Variables


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An old conjecture states that among all simplices inscribed in the unit sphere, the regular one has the maximal mean width. We restate this conjecture probabilistically and prove its asymptotic version. We also show that the mean width of the regular simplex with 2n vertices is remarkably close to the mean width of the regular crosspolytope with the same number of vertices. We establish several formulas conjectured by S. Finch on the projection length W of the regular cube, simplex, and crosspolytope onto a line with random direction. Finally, we prove distributional limit theorems for W as the dimension of the regular polytope goes to ∞. Bibliography: 25 titles.

作者简介

Z. Kabluchko

Institut für Mathematische Statistik, Universität Münster

编辑信件的主要联系方式.
Email: zakhar.kabluchko@uni-muenster.de
德国, Münster

A. Litvak

Department of Mathematical and Statistical Sciences, University of Alberta

Email: zakhar.kabluchko@uni-muenster.de
加拿大, Edmonton

D. Zaporozhets

St. Petersburg Department of the Steklov Mathematical Institute

Email: zakhar.kabluchko@uni-muenster.de
俄罗斯联邦, St. Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, 2017