Mean Width of Regular Polytopes and Expected Maxima of Correlated Gaussian Variables


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

An old conjecture states that among all simplices inscribed in the unit sphere, the regular one has the maximal mean width. We restate this conjecture probabilistically and prove its asymptotic version. We also show that the mean width of the regular simplex with 2n vertices is remarkably close to the mean width of the regular crosspolytope with the same number of vertices. We establish several formulas conjectured by S. Finch on the projection length W of the regular cube, simplex, and crosspolytope onto a line with random direction. Finally, we prove distributional limit theorems for W as the dimension of the regular polytope goes to ∞. Bibliography: 25 titles.

Авторлар туралы

Z. Kabluchko

Institut für Mathematische Statistik, Universität Münster

Хат алмасуға жауапты Автор.
Email: zakhar.kabluchko@uni-muenster.de
Германия, Münster

A. Litvak

Department of Mathematical and Statistical Sciences, University of Alberta

Email: zakhar.kabluchko@uni-muenster.de
Канада, Edmonton

D. Zaporozhets

St. Petersburg Department of the Steklov Mathematical Institute

Email: zakhar.kabluchko@uni-muenster.de
Ресей, St. Petersburg

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, 2017