Mean Width of Regular Polytopes and Expected Maxima of Correlated Gaussian Variables


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An old conjecture states that among all simplices inscribed in the unit sphere, the regular one has the maximal mean width. We restate this conjecture probabilistically and prove its asymptotic version. We also show that the mean width of the regular simplex with 2n vertices is remarkably close to the mean width of the regular crosspolytope with the same number of vertices. We establish several formulas conjectured by S. Finch on the projection length W of the regular cube, simplex, and crosspolytope onto a line with random direction. Finally, we prove distributional limit theorems for W as the dimension of the regular polytope goes to ∞. Bibliography: 25 titles.

Sobre autores

Z. Kabluchko

Institut für Mathematische Statistik, Universität Münster

Autor responsável pela correspondência
Email: zakhar.kabluchko@uni-muenster.de
Alemanha, Münster

A. Litvak

Department of Mathematical and Statistical Sciences, University of Alberta

Email: zakhar.kabluchko@uni-muenster.de
Canadá, Edmonton

D. Zaporozhets

St. Petersburg Department of the Steklov Mathematical Institute

Email: zakhar.kabluchko@uni-muenster.de
Rússia, St. Petersburg

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media, LLC, 2017