B-Algebra Structure in Homology of a Homotopy Gerstenhaber Algebra


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Abstract

The minimality theorem states, in particular, that on cohomology H(A) of a dg algebra there exists sequence of operations mi : H(A)i→ H(A), i = 2, 3, . . . , which form a minimal A-algebra (H(A), {mi}). This structure defines on the bar construction BH(A) a correct differential dm so that the bar constructions (BH(A), dm) and BA have isomorphic homology modules. It is known that if A is equipped additionally with a structure of homotopy Gerstenhaber algebra, then on BA there is a multiplication which turns it into a dg bialgebra. In this paper, we construct algebraic operations Ep,q : H(A) pH(A) q→ H(A), p, q = 0, 1, 2, . . ., which turn (H(A), {mi}, {Ep,q}) into a B-algebra. These operations determine on BH(A) correct multiplication, so that (BH(A), dm) and BA have isomorphic homology algebras.

作者简介

T. Kadeishvili

A. Razmadze Mathematical Institute; Georgian Technical University

编辑信件的主要联系方式.
Email: kade@rmi.ge
格鲁吉亚, Tbilisi; Tbilisi

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016