B-Algebra Structure in Homology of a Homotopy Gerstenhaber Algebra


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Abstract

The minimality theorem states, in particular, that on cohomology H(A) of a dg algebra there exists sequence of operations mi : H(A)i→ H(A), i = 2, 3, . . . , which form a minimal A-algebra (H(A), {mi}). This structure defines on the bar construction BH(A) a correct differential dm so that the bar constructions (BH(A), dm) and BA have isomorphic homology modules. It is known that if A is equipped additionally with a structure of homotopy Gerstenhaber algebra, then on BA there is a multiplication which turns it into a dg bialgebra. In this paper, we construct algebraic operations Ep,q : H(A) pH(A) q→ H(A), p, q = 0, 1, 2, . . ., which turn (H(A), {mi}, {Ep,q}) into a B-algebra. These operations determine on BH(A) correct multiplication, so that (BH(A), dm) and BA have isomorphic homology algebras.

Sobre autores

T. Kadeishvili

A. Razmadze Mathematical Institute; Georgian Technical University

Autor responsável pela correspondência
Email: kade@rmi.ge
Geórgia, Tbilisi; Tbilisi

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2016