B-Algebra Structure in Homology of a Homotopy Gerstenhaber Algebra


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Abstract

The minimality theorem states, in particular, that on cohomology H(A) of a dg algebra there exists sequence of operations mi : H(A)i→ H(A), i = 2, 3, . . . , which form a minimal A-algebra (H(A), {mi}). This structure defines on the bar construction BH(A) a correct differential dm so that the bar constructions (BH(A), dm) and BA have isomorphic homology modules. It is known that if A is equipped additionally with a structure of homotopy Gerstenhaber algebra, then on BA there is a multiplication which turns it into a dg bialgebra. In this paper, we construct algebraic operations Ep,q : H(A) pH(A) q→ H(A), p, q = 0, 1, 2, . . ., which turn (H(A), {mi}, {Ep,q}) into a B-algebra. These operations determine on BH(A) correct multiplication, so that (BH(A), dm) and BA have isomorphic homology algebras.

Авторлар туралы

T. Kadeishvili

A. Razmadze Mathematical Institute; Georgian Technical University

Хат алмасуға жауапты Автор.
Email: kade@rmi.ge
Грузия, Tbilisi; Tbilisi

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media New York, 2016