Representation Formula for General Solution of a Homogeneous System of Differential Equations


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the stationary oscillation case of the theory of linear thermoelasticity with microtemperatures of materials. The representation formula of a general solution of the homogeneous system of differential equations obtained in the paper is expressed by means of seven metaharmonic functions. These formulas are very convenient and useful in many particular problems for domains with concrete geometry. Here we demonstrate applications of these formulas to the Dirichlet- and Neumann-type boundary-value problems for a ball. Uniqueness theorems are proved. We construct explicit solutions in the form of absolutely and uniformly convergent series.

作者简介

L. Giorgashvili

Georgian Technical University

编辑信件的主要联系方式.
Email: lgiorgashvili@gmail.com
格鲁吉亚, Tbilisi

D. Burchuladze

Georgian Technical University

编辑信件的主要联系方式.
Email: dburchula@yahoo.com
格鲁吉亚, Tbilisi

K. Skhvitaridze

Georgian Technical University

编辑信件的主要联系方式.
Email: ketiskhvitaridze@yahoo.com
格鲁吉亚, Tbilisi

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016