Representation Formula for General Solution of a Homogeneous System of Differential Equations
- 作者: Giorgashvili L.1, Burchuladze D.1, Skhvitaridze K.1
-
隶属关系:
- Georgian Technical University
- 期: 卷 216, 编号 4 (2016)
- 页面: 527-537
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/237819
- DOI: https://doi.org/10.1007/s10958-016-2910-2
- ID: 237819
如何引用文章
详细
We consider the stationary oscillation case of the theory of linear thermoelasticity with microtemperatures of materials. The representation formula of a general solution of the homogeneous system of differential equations obtained in the paper is expressed by means of seven metaharmonic functions. These formulas are very convenient and useful in many particular problems for domains with concrete geometry. Here we demonstrate applications of these formulas to the Dirichlet- and Neumann-type boundary-value problems for a ball. Uniqueness theorems are proved. We construct explicit solutions in the form of absolutely and uniformly convergent series.
作者简介
L. Giorgashvili
Georgian Technical University
编辑信件的主要联系方式.
Email: lgiorgashvili@gmail.com
格鲁吉亚, Tbilisi
D. Burchuladze
Georgian Technical University
编辑信件的主要联系方式.
Email: dburchula@yahoo.com
格鲁吉亚, Tbilisi
K. Skhvitaridze
Georgian Technical University
编辑信件的主要联系方式.
Email: ketiskhvitaridze@yahoo.com
格鲁吉亚, Tbilisi
补充文件
