Representation Formula for General Solution of a Homogeneous System of Differential Equations


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider the stationary oscillation case of the theory of linear thermoelasticity with microtemperatures of materials. The representation formula of a general solution of the homogeneous system of differential equations obtained in the paper is expressed by means of seven metaharmonic functions. These formulas are very convenient and useful in many particular problems for domains with concrete geometry. Here we demonstrate applications of these formulas to the Dirichlet- and Neumann-type boundary-value problems for a ball. Uniqueness theorems are proved. We construct explicit solutions in the form of absolutely and uniformly convergent series.

Sobre autores

L. Giorgashvili

Georgian Technical University

Autor responsável pela correspondência
Email: lgiorgashvili@gmail.com
Geórgia, Tbilisi

D. Burchuladze

Georgian Technical University

Autor responsável pela correspondência
Email: dburchula@yahoo.com
Geórgia, Tbilisi

K. Skhvitaridze

Georgian Technical University

Autor responsável pela correspondência
Email: ketiskhvitaridze@yahoo.com
Geórgia, Tbilisi

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2016