Representation Formula for General Solution of a Homogeneous System of Differential Equations
- Авторы: Giorgashvili L.1, Burchuladze D.1, Skhvitaridze K.1
-
Учреждения:
- Georgian Technical University
- Выпуск: Том 216, № 4 (2016)
- Страницы: 527-537
- Раздел: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/237819
- DOI: https://doi.org/10.1007/s10958-016-2910-2
- ID: 237819
Цитировать
Аннотация
We consider the stationary oscillation case of the theory of linear thermoelasticity with microtemperatures of materials. The representation formula of a general solution of the homogeneous system of differential equations obtained in the paper is expressed by means of seven metaharmonic functions. These formulas are very convenient and useful in many particular problems for domains with concrete geometry. Here we demonstrate applications of these formulas to the Dirichlet- and Neumann-type boundary-value problems for a ball. Uniqueness theorems are proved. We construct explicit solutions in the form of absolutely and uniformly convergent series.
Об авторах
L. Giorgashvili
Georgian Technical University
Автор, ответственный за переписку.
Email: lgiorgashvili@gmail.com
Грузия, Tbilisi
D. Burchuladze
Georgian Technical University
Автор, ответственный за переписку.
Email: dburchula@yahoo.com
Грузия, Tbilisi
K. Skhvitaridze
Georgian Technical University
Автор, ответственный за переписку.
Email: ketiskhvitaridze@yahoo.com
Грузия, Tbilisi
Дополнительные файлы
