Asymptotically Efficient Importance Sampling for Bootstrap
- 作者: Ermakov M.S.1
-
隶属关系:
- Institute of Mechanical Engineering Problems RAS
- 期: 卷 214, 编号 4 (2016)
- 页面: 474-483
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/237433
- DOI: https://doi.org/10.1007/s10958-016-2791-4
- ID: 237433
如何引用文章
详细
The Large Deviation Principle is proved for the conditional probabilities of moderate deviations of weighted empirical bootstrap measures with respect to a fixed empirical measure. Using this LDP for the problem of calculation of moderate deviation probabilities of differentiable statistical functionals, it is shown that the importance sampling based on influence function is asymptotically efficient.
作者简介
M. Ermakov
Institute of Mechanical Engineering Problems RAS
编辑信件的主要联系方式.
Email: erm2512@mail.ru
俄罗斯联邦, St.Petersburg
补充文件
