Asymptotically Efficient Importance Sampling for Bootstrap
- Autores: Ermakov M.S.1
-
Afiliações:
- Institute of Mechanical Engineering Problems RAS
- Edição: Volume 214, Nº 4 (2016)
- Páginas: 474-483
- Seção: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/237433
- DOI: https://doi.org/10.1007/s10958-016-2791-4
- ID: 237433
Citar
Resumo
The Large Deviation Principle is proved for the conditional probabilities of moderate deviations of weighted empirical bootstrap measures with respect to a fixed empirical measure. Using this LDP for the problem of calculation of moderate deviation probabilities of differentiable statistical functionals, it is shown that the importance sampling based on influence function is asymptotically efficient.
Palavras-chave
Sobre autores
M. Ermakov
Institute of Mechanical Engineering Problems RAS
Autor responsável pela correspondência
Email: erm2512@mail.ru
Rússia, St.Petersburg
Arquivos suplementares
