On the Ring of Local Unitary Invariants for Mixed X-States of Two Qubits
- Авторы: Gerdt V.1, Khvedelidze A.2,3,4, Palii Y.5
-
Учреждения:
- Laboratory of Information Technologies, Joint Institute for Nuclear Research, University “Dubna”
- Institute of Quantum Physics and Engineering Technologies, Georgian Technical University
- A. Razmadze Mathematical Institute, Iv. Javakhishvili Tbilisi State University
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
- Institute of Applied Physics
- Выпуск: Том 224, № 2 (2017)
- Страницы: 238-249
- Раздел: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239536
- DOI: https://doi.org/10.1007/s10958-017-3409-1
- ID: 239536
Цитировать
Аннотация
Entangling properties of a mixed two-qubit system can be described by local homogeneous unitary invariant polynomials in the elements of the density matrix. The structure of the corresponding ring of invariant polynomials for a special subclass of states, the so-called mixed X-states, is established. It is shown that for the X-states there is an injective ring homomorphism of the quotient ring of SU(2)×SU(2)-invariant polynomials modulo its syzygy ideal to the SO(2) × SO(2)-invariant ring freely generated by five homogeneous polynomials of degrees 1, 1, 1, 2, 2.
Об авторах
V. Gerdt
Laboratory of Information Technologies, Joint Institute for Nuclear Research, University “Dubna”
Автор, ответственный за переписку.
Email: gerdt@jinr.ru
Россия, Dubna
A. Khvedelidze
Institute of Quantum Physics and Engineering Technologies, Georgian Technical University; A. Razmadze Mathematical Institute, Iv. Javakhishvili Tbilisi State University; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: gerdt@jinr.ru
Грузия, Tbilisi; Tbilisi; Moscow
Yu. Palii
Institute of Applied Physics
Email: gerdt@jinr.ru
Молдавия, Chisinau
Дополнительные файлы
