On the Ring of Local Unitary Invariants for Mixed X-States of Two Qubits


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Entangling properties of a mixed two-qubit system can be described by local homogeneous unitary invariant polynomials in the elements of the density matrix. The structure of the corresponding ring of invariant polynomials for a special subclass of states, the so-called mixed X-states, is established. It is shown that for the X-states there is an injective ring homomorphism of the quotient ring of SU(2)×SU(2)-invariant polynomials modulo its syzygy ideal to the SO(2) × SO(2)-invariant ring freely generated by five homogeneous polynomials of degrees 1, 1, 1, 2, 2.

Sobre autores

V. Gerdt

Laboratory of Information Technologies, Joint Institute for Nuclear Research, University “Dubna”

Autor responsável pela correspondência
Email: gerdt@jinr.ru
Rússia, Dubna

A. Khvedelidze

Institute of Quantum Physics and Engineering Technologies, Georgian Technical University; A. Razmadze Mathematical Institute, Iv. Javakhishvili Tbilisi State University; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: gerdt@jinr.ru
Geórgia, Tbilisi; Tbilisi; Moscow

Yu. Palii

Institute of Applied Physics

Email: gerdt@jinr.ru
Moldova, Chisinau

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2017