On the Ring of Local Unitary Invariants for Mixed X-States of Two Qubits


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Entangling properties of a mixed two-qubit system can be described by local homogeneous unitary invariant polynomials in the elements of the density matrix. The structure of the corresponding ring of invariant polynomials for a special subclass of states, the so-called mixed X-states, is established. It is shown that for the X-states there is an injective ring homomorphism of the quotient ring of SU(2)×SU(2)-invariant polynomials modulo its syzygy ideal to the SO(2) × SO(2)-invariant ring freely generated by five homogeneous polynomials of degrees 1, 1, 1, 2, 2.

作者简介

V. Gerdt

Laboratory of Information Technologies, Joint Institute for Nuclear Research, University “Dubna”

编辑信件的主要联系方式.
Email: gerdt@jinr.ru
俄罗斯联邦, Dubna

A. Khvedelidze

Institute of Quantum Physics and Engineering Technologies, Georgian Technical University; A. Razmadze Mathematical Institute, Iv. Javakhishvili Tbilisi State University; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: gerdt@jinr.ru
格鲁吉亚, Tbilisi; Tbilisi; Moscow

Yu. Palii

Institute of Applied Physics

Email: gerdt@jinr.ru
摩尔多瓦共和国, Chisinau

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2017