An Explicit Form of the Hilbert Symbol for Polynomial Formal Groups Over a Multidimensional Local Field. I
- Авторлар: Vostokov S.V.1, Volkov V.1, Bondarko M.V.1
-
Мекемелер:
- St. Petersburg State University
- Шығарылым: Том 219, № 3 (2016)
- Беттер: 370-374
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/238575
- DOI: https://doi.org/10.1007/s10958-016-3112-7
- ID: 238575
Дәйексөз келтіру
Аннотация
Let K be a multidimensional local field with characteristic different from the characteristic of its residue field, c be a unit of K, and Fc(X, Y) = X +Y +cXY be a polynomial formal group, which defines the formal module Fc(\( \mathfrak{M} \)) over the maximal ideal of the ring of integers in K. Assume that K contains the group of roots of the isogeny [pm]c(X), which we denote by μFc,m. Let be the multiplicative group of Cartier curves and c be the formal analog of the module Fc(\( \mathfrak{M} \)). In the present paper, the formal symbol { ·, · }c : Kn()×c → μFc,m is constructed and its basic properties are checked. This is the first step in the construction of an explicit formula for the Hilbert symbol.
Авторлар туралы
S. Vostokov
St. Petersburg State University
Хат алмасуға жауапты Автор.
Email: sergei.vostokov@gmail.com
Ресей, St. Petersburg
V. Volkov
St. Petersburg State University
Email: sergei.vostokov@gmail.com
Ресей, St. Petersburg
M. Bondarko
St. Petersburg State University
Email: sergei.vostokov@gmail.com
Ресей, St. Petersburg
Қосымша файлдар
