An Explicit Form of the Hilbert Symbol for Polynomial Formal Groups Over a Multidimensional Local Field. I
- 作者: Vostokov S.V.1, Volkov V.1, Bondarko M.V.1
-
隶属关系:
- St. Petersburg State University
- 期: 卷 219, 编号 3 (2016)
- 页面: 370-374
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/238575
- DOI: https://doi.org/10.1007/s10958-016-3112-7
- ID: 238575
如何引用文章
详细
Let K be a multidimensional local field with characteristic different from the characteristic of its residue field, c be a unit of K, and Fc(X, Y) = X +Y +cXY be a polynomial formal group, which defines the formal module Fc(\( \mathfrak{M} \)) over the maximal ideal of the ring of integers in K. Assume that K contains the group of roots of the isogeny [pm]c(X), which we denote by μFc,m. Let be the multiplicative group of Cartier curves and c be the formal analog of the module Fc(\( \mathfrak{M} \)). In the present paper, the formal symbol { ·, · }c : Kn()×c → μFc,m is constructed and its basic properties are checked. This is the first step in the construction of an explicit formula for the Hilbert symbol.
作者简介
S. Vostokov
St. Petersburg State University
编辑信件的主要联系方式.
Email: sergei.vostokov@gmail.com
俄罗斯联邦, St. Petersburg
V. Volkov
St. Petersburg State University
Email: sergei.vostokov@gmail.com
俄罗斯联邦, St. Petersburg
M. Bondarko
St. Petersburg State University
Email: sergei.vostokov@gmail.com
俄罗斯联邦, St. Petersburg
补充文件
