An Explicit Form of the Hilbert Symbol for Polynomial Formal Groups Over a Multidimensional Local Field. I


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let K be a multidimensional local field with characteristic different from the characteristic of its residue field, c be a unit of K, and Fc(X, Y) = X +Y +cXY be a polynomial formal group, which defines the formal module Fc(\( \mathfrak{M} \)) over the maximal ideal of the ring of integers in K. Assume that K contains the group of roots of the isogeny [pm]c(X), which we denote by μFc,m. Let be the multiplicative group of Cartier curves and c be the formal analog of the module Fc(\( \mathfrak{M} \)). In the present paper, the formal symbol { ·, · }c : Kn()×c → μFc,m is constructed and its basic properties are checked. This is the first step in the construction of an explicit formula for the Hilbert symbol.

作者简介

S. Vostokov

St. Petersburg State University

编辑信件的主要联系方式.
Email: sergei.vostokov@gmail.com
俄罗斯联邦, St. Petersburg

V. Volkov

St. Petersburg State University

Email: sergei.vostokov@gmail.com
俄罗斯联邦, St. Petersburg

M. Bondarko

St. Petersburg State University

Email: sergei.vostokov@gmail.com
俄罗斯联邦, St. Petersburg

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016