An Explicit Form of the Hilbert Symbol for Polynomial Formal Groups Over a Multidimensional Local Field. I
- Авторы: Vostokov S.V.1, Volkov V.1, Bondarko M.V.1
-
Учреждения:
- St. Petersburg State University
- Выпуск: Том 219, № 3 (2016)
- Страницы: 370-374
- Раздел: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/238575
- DOI: https://doi.org/10.1007/s10958-016-3112-7
- ID: 238575
Цитировать
Аннотация
Let K be a multidimensional local field with characteristic different from the characteristic of its residue field, c be a unit of K, and Fc(X, Y) = X +Y +cXY be a polynomial formal group, which defines the formal module Fc(\( \mathfrak{M} \)) over the maximal ideal of the ring of integers in K. Assume that K contains the group of roots of the isogeny [pm]c(X), which we denote by μFc,m. Let be the multiplicative group of Cartier curves and c be the formal analog of the module Fc(\( \mathfrak{M} \)). In the present paper, the formal symbol { ·, · }c : Kn()×c → μFc,m is constructed and its basic properties are checked. This is the first step in the construction of an explicit formula for the Hilbert symbol.
Об авторах
S. Vostokov
St. Petersburg State University
Автор, ответственный за переписку.
Email: sergei.vostokov@gmail.com
Россия, St. Petersburg
V. Volkov
St. Petersburg State University
Email: sergei.vostokov@gmail.com
Россия, St. Petersburg
M. Bondarko
St. Petersburg State University
Email: sergei.vostokov@gmail.com
Россия, St. Petersburg
Дополнительные файлы
