Index Set of Linear Orderings that are Autostable Relative to Strong Constructivizations
- Authors: Goncharov S.S.1,2, Bazhenov N.A.1,2, Marchuk M.I.1
-
Affiliations:
- Sobolev Institute of Mathematics SB RAS
- Novosibirsk State University
- Issue: Vol 221, No 6 (2017)
- Pages: 840-848
- Section: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/239118
- DOI: https://doi.org/10.1007/s10958-017-3272-0
- ID: 239118
Cite item
Abstract
We prove that a computable ordinal α is autostable relative to strong constructivizations if and only if α < ωω+1. We obtain an estimate of the algorithmic complexity for the class of strongly constructivizable linear orderings that are autostable relative to strong constructivizations.
About the authors
S. S. Goncharov
Sobolev Institute of Mathematics SB RAS; Novosibirsk State University
Author for correspondence.
Email: s.s.goncharov@math.nsc.ru
Russian Federation, 4, pr. Akad. Koptyuga, Novosibirsk, 630090; 2, ul. Pirogova, Novosibirsk, 630090
N. A. Bazhenov
Sobolev Institute of Mathematics SB RAS; Novosibirsk State University
Email: s.s.goncharov@math.nsc.ru
Russian Federation, 4, pr. Akad. Koptyuga, Novosibirsk, 630090; 2, ul. Pirogova, Novosibirsk, 630090
M. I. Marchuk
Sobolev Institute of Mathematics SB RAS
Email: s.s.goncharov@math.nsc.ru
Russian Federation, 4, pr. Akad. Koptyuga, Novosibirsk, 630090
Supplementary files
