Index Set of Linear Orderings that are Autostable Relative to Strong Constructivizations


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We prove that a computable ordinal α is autostable relative to strong constructivizations if and only if α < ωω+1. We obtain an estimate of the algorithmic complexity for the class of strongly constructivizable linear orderings that are autostable relative to strong constructivizations.

About the authors

S. S. Goncharov

Sobolev Institute of Mathematics SB RAS; Novosibirsk State University

Author for correspondence.
Email: s.s.goncharov@math.nsc.ru
Russian Federation, 4, pr. Akad. Koptyuga, Novosibirsk, 630090; 2, ul. Pirogova, Novosibirsk, 630090

N. A. Bazhenov

Sobolev Institute of Mathematics SB RAS; Novosibirsk State University

Email: s.s.goncharov@math.nsc.ru
Russian Federation, 4, pr. Akad. Koptyuga, Novosibirsk, 630090; 2, ul. Pirogova, Novosibirsk, 630090

M. I. Marchuk

Sobolev Institute of Mathematics SB RAS

Email: s.s.goncharov@math.nsc.ru
Russian Federation, 4, pr. Akad. Koptyuga, Novosibirsk, 630090

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Springer Science+Business Media New York