On the Set of Locally Convex Topologies Compatible with a Given Topology on a Vector Space: Cardinality Aspects
- Autores: Martín-Peinador E.1, Tarieladze V.2
-
Afiliações:
- Universidad Complutense de Madrid
- N. Muskhelishvili Institute of Computational Mathematics
- Edição: Volume 216, Nº 4 (2016)
- Páginas: 577-579
- Seção: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/237844
- DOI: https://doi.org/10.1007/s10958-016-2917-8
- ID: 237844
Citar
Resumo
For a topological vector space (X, τ), we consider the family LCT(X, τ) of all locally convex topologies defined on X, which give rise to the same continuous linear functionals as the original topology τ. We prove that for an infinite-dimensional reflexive Banach space (X, τ), the cardinality of LCT(X, τ) is at least \( \mathfrak{c} \).
Sobre autores
E. Martín-Peinador
Universidad Complutense de Madrid
Autor responsável pela correspondência
Email: em_peinador@mat.ucm.es
Espanha, Madrid
V. Tarieladze
N. Muskhelishvili Institute of Computational Mathematics
Email: em_peinador@mat.ucm.es
Geórgia, Tbilisi
Arquivos suplementares
