On the Set of Locally Convex Topologies Compatible with a Given Topology on a Vector Space: Cardinality Aspects
- 作者: Martín-Peinador E.1, Tarieladze V.2
-
隶属关系:
- Universidad Complutense de Madrid
- N. Muskhelishvili Institute of Computational Mathematics
- 期: 卷 216, 编号 4 (2016)
- 页面: 577-579
- 栏目: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/237844
- DOI: https://doi.org/10.1007/s10958-016-2917-8
- ID: 237844
如何引用文章
详细
For a topological vector space (X, τ), we consider the family LCT(X, τ) of all locally convex topologies defined on X, which give rise to the same continuous linear functionals as the original topology τ. We prove that for an infinite-dimensional reflexive Banach space (X, τ), the cardinality of LCT(X, τ) is at least \( \mathfrak{c} \).
作者简介
E. Martín-Peinador
Universidad Complutense de Madrid
编辑信件的主要联系方式.
Email: em_peinador@mat.ucm.es
西班牙, Madrid
V. Tarieladze
N. Muskhelishvili Institute of Computational Mathematics
Email: em_peinador@mat.ucm.es
格鲁吉亚, Tbilisi
补充文件
