On the Set of Locally Convex Topologies Compatible with a Given Topology on a Vector Space: Cardinality Aspects
- Авторлар: Martín-Peinador E.1, Tarieladze V.2
-
Мекемелер:
- Universidad Complutense de Madrid
- N. Muskhelishvili Institute of Computational Mathematics
- Шығарылым: Том 216, № 4 (2016)
- Беттер: 577-579
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/237844
- DOI: https://doi.org/10.1007/s10958-016-2917-8
- ID: 237844
Дәйексөз келтіру
Аннотация
For a topological vector space (X, τ), we consider the family LCT(X, τ) of all locally convex topologies defined on X, which give rise to the same continuous linear functionals as the original topology τ. We prove that for an infinite-dimensional reflexive Banach space (X, τ), the cardinality of LCT(X, τ) is at least \( \mathfrak{c} \).
Авторлар туралы
E. Martín-Peinador
Universidad Complutense de Madrid
Хат алмасуға жауапты Автор.
Email: em_peinador@mat.ucm.es
Испания, Madrid
V. Tarieladze
N. Muskhelishvili Institute of Computational Mathematics
Email: em_peinador@mat.ucm.es
Грузия, Tbilisi
Қосымша файлдар
