Biosynthesis of suberic acid from glucose through the inverted fatty acid β-oxidation by recombinant Escherichia coli strains

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Using directly engineered derivatives of previously constructed adipate-producingEscherichia colistrains MG1655lacIQ, ∆ackA-pta, ∆poxB, ∆ldhA,∆adhE, PL-SDj10-atoB, Ptrc-ideal-4-SDj10-fadB, ∆fadE, PL-SDj10-tesB, ∆yciA, Ptrc-ideal-4-SDj10-fabI, PL-SDj10-paaJ,∆aceBAK,∆glcBи MG1655lacIQ, ∆ackA-pta, ∆poxB, ∆ldhA,∆adhE, PL-SDj10-atoB, Ptrc-ideal-4-SDj10-fadB, PL-SDj10-tesB, ∆yciA, Ptrc-ideal-4-SDj10-fadE, PL-SDj10-paaJ,∆aceBAK,∆glcBthe feasibility of suberic acid biosynthesis from glucose by this bacterium resulting from the reversal of the native fatty acid β-oxidation pathway was demonstrated. The condensation of acetyl-CoA with succinyl-CoA and adipyl-CoA was ensured in recombinants by 3-oxoadipyl-CoA thiolase PaaJ, whereas the putative acetyl-CoA C-acetyltransferase YqeF was unable to catalyse the respective reactions.The biosynthesis of ~60 μM suberic acid was achieved upon significant enhancement in the strains of the expression of the bifunctional (S)-3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA reductase gene,fadB. Subsequent inactivation of succinate dehydrogenase in the strains increased the intracellular availability of succinyl-CoA for the initiation of the first round of cycle reversal and favored an increase in the accumulation of the target compound by the recombinants to ~75 μM. The results provide a framework for the development of highly efficient producing strains for bio-based production of suberic acid from renewable raw materials.

About the authors

A. Y. Gulevich

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: andrey.gulevich@gmail.com
Moscow, 117312 Russia

A. Y. Skorokhodova

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: andrey.gulevich@gmail.com
Moscow, 117312 Russia

V. G. Debabov

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Author for correspondence.
Email: andrey.gulevich@gmail.com
Moscow, 117312 Russia

References

  1. Tarasava K.,Lee S.H.,Chen J.,Köpke M.,Jewett M.C.,Gonzalez R. // J. Ind. Microbiol. Biotechnol. 2022. V. 49. № 2. kuac003. https://doi.org/10.1093/jimb/kuac003
  2. Fujita Y.,Matsuoka H.,Hirooka K. // Mol. Microbiol. 2007. V. 66. № 4. P. 829–839.
  3. Kim S.,Cheong S.,Chou A.,Gonzalez R. // Curr. Opin. Biotechnol. 2016. V. 42. P.206–215. https://doi.org/10.1016/j.copbio.2016.07.004
  4. Dellomonaco C.,Clomburg J.M.,Miller E.N.,Gonzalez R. // Nature. 2011. V. 476. P. 355–359. https://doi.org/10.1038/nature10333
  5. Gulevich A.Y.,Skorokhodova A.Y.,Sukhozhenko A.V.,Shakulov R.S.,Debabov V.G. // Biotechnol. Lett. 2012. V. 34. P. 463–469. https://doi.org/10.1007/s10529-011-0797-z
  6. Mehrer C.R.,Incha M.R.,Politz M.C.,Pfleger B.F. // Metab. Eng. 2018. V. 48. P. 63–71. https://doi.org/10.1016/j.ymben.2018.05.011
  7. Chen J.,Gonzalez R. // Metab. Eng. 2023. V. 79. P. 173–181. https://doi.org/10.1016/j.ymben.2023.07.006
  8. Kim S.,Clomburg J.M.,Gonzalez R. // J. Ind. Microbiol. Biotechnol. 2015. V. 42. P. 465–75. https://doi.org/10.1007/s10295-015-1589-6
  9. Kim S.,Cheong S.,Gonzalez R. // Metab. Eng. 2016. V. 36. P. 90–98. https://doi.org/10.1016/j.ymben.2016.03.005
  10. Gulevich A.Y.,Skorokhodova A.Y.,Debabov V.G. // Biomolecules. 2024. V. 14. 449. http://doi.org/10.3390/biom14040449
  11. Cheong S.,Clomburg J.M.,Gonzalez R. // Nat. Biotechnol. V. 34. № 5. P. 556–561. https://doi.org/10.1038/nbt.3505
  12. Lang M.,Li H. // ChemSusChem. 2022. V. 15. № 1. e202101531. https://doi.org/10.1002/cssc.202101531
  13. Liao Z.,Yeoh Y.K.,Parumasivam T.,Koh W.Y.,Alrosan M.,Alu’datt M.H.,Tan T.C. // RSC Adv. 2024.V. 14. № 24. P. 17008–17021. https://doi.org/10.1039/d4ra02598a
  14. Гулевич А.Ю.,Скороходова А.Ю.,Дебабов В.Г. // Прикл. биохимия и микробиология. 2023. Т. 59. № 3. С. 235–243.
  15. Гулевич А.Ю.,Скороходова А.Ю.,Дебабов В.Г. // Прикл. биохимия и микробиология. 2023. Т. 60. № 3. С. 28–35.
  16. Sambrook J.,Fritsch E.,Maniatis T. // Molecular Cloning: a Laboratory Manual, 2 nd Ed., N.Y.: Cold Spring Harbor Lab. Press, 1989. 1659 р.
  17. Скороходова А.Ю.,Стасенко А.А.,Гулевич А.Ю.,Дебабов В.Г. // Прикл. биохимия и микробиология. 2018. Т. 54. № 3. С. 244–252.
  18. Skorokhodova A.Y.,Gulevich A.Y.,Debabov V.G. // Biotechnol. Rep. 2022. V. 33. e00703. http://doi.org/10.1016/j.btre.2022.e00703
  19. Datsenko K.A.,Wanner B.L. // Proc. Natl. Acad. Sci. USA.2000. V. 97. № 12. Р. 6640–6645.
  20. Каташкина Ж.И.,Скороходова А.Ю.,Зименков Д.В.,Гулевич А.Ю.,Минаева Н.И.,Дорошенко В.Г.,Бирюкова И.В.,Машко С.В. // Молекулярная биология. 2005. Т. 39. № 5. С. 823–831.
  21. Гулевич А.Ю.,Скороходова А.Ю.,Ермишев В.Ю.,Крылов А.А.,Минаева Н.И.,Полонская З.М. и др. // Молекулярная биология. 2009. Т. 43. № 3. С. 547–557.
  22. Clark D.P.,Cronan J.E. // EcoSal Plus.2005. V. 1. 10.1128/ecosalplus.3.4.4. https://doi.org/10.1128/ecosalplus.3.4.4.
  23. Binstock J.F.,Schulz H. // Methods. Enzymol. 1981. V. 71. P. 403–411. https://doi.org/10.1016/0076-6879(81)71051-6
  24. Teufel R.,Mascaraque V.,Ismail W.,Voss M.,Perera J.,Eisenreich W.,Haehnel W.,Fuchs G. // Proc. Natl. Acad. Sci. USA. 2010. V. 107. № 32. P. 14390–14395. https://doi.org/10.1073/pnas.1005399107
  25. Deuschle U.,Kammerer W.,Gentz R.,Bujard H. // EMBO J. 1986. V. 5. P. 2987–2994. https://doi.org/10.1002/j.1460-2075.1986.tb04596.x

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).