ON THE ESTIMATION OF THE EXPLICIT EULER METHOD LOCAL ERROR FOR THE NUMERICAL SOLUTION OF THE CAUCHY PROBLEM FOR ORDINARY DIFFERENTIAL EQUATIONS TRANSFORMED TO THE BEST ARGUMENT
- Autores: Kuznetsov E.B1, Leonov S.S1,2
-
Afiliações:
- Moscow Aviation Institute (National Research University)
- Peoples’ Friendship University of Russia named after Patrice Lumumba
- Edição: Volume 61, Nº 2 (2025)
- Páginas: 242-260
- Seção: NUMERICAL METHODS
- URL: https://ogarev-online.ru/0374-0641/article/view/299129
- DOI: https://doi.org/10.31857/S0374064125020093
- EDN: https://elibrary.ru/HVZTKB
- ID: 299129
Citar
Resumo
Sobre autores
E. Kuznetsov
Moscow Aviation Institute (National Research University)
Email: kuznetsov@mai.ru
S. Leonov
Moscow Aviation Institute (National Research University); Peoples’ Friendship University of Russia named after Patrice Lumumba
Email: powerandglory@yandex.ru
Bibliografia
- Hairer, E., Nørsett, S.P., and Wanner, G., Solving Ordinary Differential Equations. I: Nonstiff Problems, Berlin: Springer-Verlag, 1987.
- Hairer, E. and Wanner, G., Solving Ordinary Differential Equations. II: Stiff and Differential-Algebraic Problems, Berlin: Springer-Verlag, 1996.
- Skvortsov, L.M., Chislennoye resheniye obyknovennykh differentsial’nykh i differentsial’no-algebraicheskikh uravneniy (Numerical Solution of Ordinary Differential and Differential-Algebraic Equations), Moscow: DMK-Press, 2018.
- Novikov, E.A. and Shornikov, Yu.V., Modelirovaniye zhestkikh gibridnykh sistem (Modeling of Rigid Hybrid Systems), Saint Petersburg: Lan’, 2019.
- Shalashilin, V.I. and Kuznetsov, E.B., Parametric Continuation and Optimal Parametrization in Applied Mathematics and Mechanics, Dordrecht, Boston, London: Kluwer Academic Publishers, 2003.
- Grigolyuk, E.I. and Shalashilin, V.I., Problems of Nonlinear Deformation: The Continuation Method Applied to Nonlinear Problems in Solid Mechanics, Dordrecht: Kluwer Academic Publishers, 1991.
- Kuznetsov, E.B. and Shalashilin, V.I., The Cauchy problem as a problem of continuation with respect to the best parameter, Differ. Equat., 1994, vol. 30, no. 6, pp. 893–898.
- Danilin, A.N., Zuev, N.N., Kuznetsov, E.B., and Shalashilin, V.I., Some numerical efficiency estimates for the transformation of the Cauchy problem for differential equations to the best argument, Comput. Math. Math. Phys., 1999, vol. 39, no. 7, pp. 1092–1099.
- Kuznetsov, E.B. and Leonov S.S., On estimating the local error of a numerical solution of a parametrized Cauchy problem, Russ. Math. Surv., 2022, vol. 77, no. 3, pp. 543–545.
- Bakhvalov, N.S., Zhidkov, N.P., and Kobel’kov, G.M., Chislennyye metody (Numerical methods), Moscow: Laboratoriya Bazovykh Znaniy, 2002.
- Amosov, A.A., Dubinskii, Yu.A., and Kopchenova, N.V., Vychislitel’nyye metody dlya inzhenerov (Computational Methods for Engineers), Moscow: Vysshaya shkola, 1994.
- Courant, R. and Hilbert, D., Methods of Mathematical Physics. Vol. 1, New York, London, Sydney: Wiley & Sons, 1953.
- Sosnin, O.V., Gorev, B.V., and Nikitenko, A.F., Energeticheskiy variant teorii polzuchesti (Energy Variant of the Creep Theory), Novosibirsk: Institut gidrodinamiki SO AN SSSR, 1986.
- Gorev, B.V., Lyubashevskaya, I.V., Panamarev, V.A., and Iyavoynen, S.V., Description of creep and fracture of modern construction materials using kinetic equations in energy form, J. Appl. Mech. Tech. Phys., 2014, vol. 55, no. 6, pp. 1020–1030.
Arquivos suplementares
