ON DIFFERENTIAL EQUATIONS WITH EVEN NUMBER OF PERIODIC SOLUTIONS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We distingulshed a class of nonlinear ordinary differential equations having even number of periodic solutions. The conditions of existing of at least two such soluitions are given.

Sobre autores

V. Klimov

P.G. Demidov Yaroslavl State University

Email: vsk76@list.ru
Russia

Bibliografia

  1. Sobolev, S.L., Nekotorye primeneniya funcionalnogo analiza v matematicheskoi fizike (Some Applications of Functional Analysis to Mathematical Physics), Moscow: Nauka, 1988.
  2. Nikolskii, S.M., Priblizhenie funcii mnogih peremennyh i teoremy vlozheniya (Approximation of Multivariable Functions and Embedding Theorems), Moscow: Nauka, 1977.
  3. Krasnoselsky, M.A., Burd, V.Sh., and Kolesov, Yu.S., Nelineinye pochti periodicheskie kolebaniya (Nonlinear Almost-Periodic Oscillations), Moscow: Nauka, 1970.
  4. Krasnoselsky, M.A., Lifshitz, E.A., and Sobolev, A.V., Pozitivnye lineinye sistemy (Positive Linear Systems), Moscow: Nauka, 1985.
  5. Klimov, V.S., Estimates of integrally bounded solutions of linear differential inequalities, Differ. Equat., 2023, vol. 59, no. 9, pp. 1151–1165.
  6. Lere, Zh. and Shauder, Yu., Topology and functional equations, Usp. Mat. Nauk, 1946, vol. 1, no. 3–4, pp. 71–95.
  7. Krasnoselsky, M.A. and Zabreiko, P.P., Geometricheskie metody nelineinogo analiza (Geometric Methods of Non-Linear Analysis), Moscow: Nauka, 1975.
  8. Smale, S. An infinite dimentional of Sard’s theorem / S. Smale // Amer. J. Math. — 1965. — V. 87. — P. 861–867.
  9. Zvyagin, V.G. and Ratiner, N.M., Oriented degree of Fredholm maps: finite-dimensional reduction method, J. Math. Sci., 2015, vol. 204, pp. 543–714.
  10. Klimov, V.S. and Pavlenko, A.N., Reverse functional inequalities and their applications to nonlinear elliptic boundary value problems, Siberian Math. J., 2001, vol. 42, no. 4, pp. 656–667.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).