Градиент в задаче управления процессами, описываемыми линейными псевдогиперболическими уравнениями

Обложка

Цитировать

Полный текст

Аннотация

Рассмотрена задача управления процессами, математической моделью которых является начально-краевая задача для псевдогиперболического линейного дифференциального уравнения высокого порядка по пространственной переменной и второго порядка по временнй переменной. Псевдогиперболическое уравнение является обобщением обычного гиперболического уравнения, типичного в теории колебаний. В качестве примеров изучены модели колебаний движущихся упругих материалов. Для модельных задач установлено энергетическое тождество, сформулированы условия единственности решения. Как оптимизационная рассмотрена задача управления правой частью с целью минимизации квадратичного интегрального функционала, который оценивает близость решения к целевой функции. От изначального функционала выполнен переход к мажорантному функционалу, для которого установлена соответствующая оценка сверху. Получено явное выражение градиента этого функционала, выведены сопряжённые начально-краевые задачи.

Полный текст

1. Введение. Постановка задачи

Пусть L j 2 n j (z)[z] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaadQgaaeaaca aIYaGaamOBamaaBaaabaGaamOAaaqabaaaaOGaaGikaiaadQhacaaI PaGaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiq aacqWFDeIucaaIBbGaamOEaiaai2faaaa@47DD@ , здесь n j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbWaaSbaaSqaaiaadQgaaeqaaO GaeyicI48efv3ySLgznfgDOjdaryqr1ngBPrginfgDObcv39gaiqaa cqWFveItaaa@4004@ , j{1,2,3} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGQbGaeyicI4SaaG4Eaiaaigdaca aISaGaaGOmaiaaiYcacaaIZaGaaGyFaaaa@39DC@ . Рассмотрим линейное дифференциальное уравнение с постоянными коэффициентами

L 1 2 n 1 ( x ) 2 u t 2 + L 2 2 n 2 ( x ) u t + L 3 2 n 3 ( x )u=F(x,t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaaigdaaeaaca aIYaGaamOBamaaBaaabaGaaGymaaqabaaaaOGaaGikamaalaaabaGa eyOaIylabaGaeyOaIyRaamiEaaaacaaIPaWaaSaaaeaacqGHciITda ahaaWcbeqaaiaaikdaaaGccaWG1baabaGaeyOaIyRaamiDamaaCaaa leqabaGaaGOmaaaaaaGccqGHRaWkcaWGmbWaa0baaSqaaiaaikdaae aacaaIYaGaamOBamaaBaaabaGaaGOmaaqabaaaaOGaaGikamaalaaa baGaeyOaIylabaGaeyOaIyRaamiEaaaacaaIPaWaaSaaaeaacqGHci ITcaWG1baabaGaeyOaIyRaamiDaaaacqGHRaWkcaWGmbWaa0baaSqa aiaaiodaaeaacaaIYaGaamOBamaaBaaabaGaaG4maaqabaaaaOGaaG ikamaalaaabaGaeyOaIylabaGaeyOaIyRaamiEaaaacaaIPaGaamyD aiaai2dacaWGgbGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaIUa aaaa@6304@      (1)

В нём операторы L j 2 n j (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaadQgaaeaaca aIYaGaamOBamaaBaaabaGaamOAaaqabaaaaOGaaGikaiabgkGi2kab gkGi2kaadIhacaaIPaaaaa@3BA1@  можно рассматривать как линейные дифференциальные операторы порядка 2n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIYaGaamOBaaaa@336C@ , n=maxj=1, 2, 3nj, которые порождаются соответствующими многочленами от одной переменной и определяются соотношениями

L j 2n (z)= k=0 2n p j,k z k , p j,k , k=0 2n p j,k 0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaadQgaaeaaca aIYaGaamOBaaaakiaaiIcacaWG6bGaaGykaiaai2dadaaeWbqabSqa aiaadUgacaaI9aGaaGimaaqaaiaaikdacaWGUbaaniabggHiLdGcca WGWbWaaSbaaSqaaiaadQgacaaISaGaam4AaaqabaGccaWG6bWaaWba aSqabeaacaWGRbaaaOGaaGilaiaaywW7caWGWbWaaSbaaSqaaiaadQ gacaaISaGaam4AaaqabaGccqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3y SLgzG0uy0HgiuD3BaGabaiab=1risjaaiYcacaaMf8+aaabCaeqale aacaWGRbGaaGypaiaaicdaaeaacaaIYaGaamOBaaqdcqGHris5aOWa aqWaaeaacaWGWbWaaSbaaSqaaiaadQgacaaISaGaam4Aaaqabaaaki aawEa7caGLiWoacqGHGjsUcaaIWaGaaGilaaaa@69EA@

а при z=/x имеем

  L j 2n ( x )= k=0 2n p j,k k x k , p j,k . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaadQgaaeaaca aIYaGaamOBaaaakiaaiIcadaWcaaqaaiabgkGi2cqaaiabgkGi2kaa dIhaaaGaaGykaiaai2dadaaeWbqabSqaaiaadUgacaaI9aGaaGimaa qaaiaaikdacaWGUbaaniabggHiLdGccaWGWbWaaSbaaSqaaiaadQga caaISaGaam4AaaqabaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaam 4AaaaaaOqaaiabgkGi2kaadIhadaahaaWcbeqaaiaadUgaaaaaaOGa aGilaiaaywW7caWGWbWaaSbaaSqaaiaadQgacaaISaGaam4Aaaqaba GccqGHiiIZtuuDJXwAK1uy0HMmaeHbfv3ySLgzG0uy0HgiuD3BaGab aiab=1risjaai6caaaa@5EB3@

Решение уравнения (1) удовлетворяет краевым условиям

αkkuxk|x=0=0,βkkuxk|x=l=0,k=0,2n1¯,    (2)

и начальным условиям

u | t=0 = u 0 (x), u t | t=0 = u 1 (x). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGiFamaaBaaaleaacaWG0b GaaGypaiaaicdaaeqaaOGaaGypaiaadwhadaWgaaWcbaGaaGimaaqa baGccaaIOaGaamiEaiaaiMcacaaISaGaaGzbVpaalaaabaGaeyOaIy RaamyDaaqaaiabgkGi2kaadshaaaGaaGiFamaaBaaaleaacaWG0bGa aGypaiaaicdaaeqaaOGaaGypaiaadwhadaWgaaWcbaGaaGymaaqaba GccaaIOaGaamiEaiaaiMcacaaIUaaaaa@4C15@     (3)

При этом числа α k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHXoqydaWgaaWcbaGaam4Aaaqaba aaaa@3478@ , β k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHYoGydaWgaaWcbaGaam4Aaaqaba aaaa@347A@  не все равны нулю. Отметим, что выполняются условия согласования на краях, а именно, условиям (2) удовлетворяют производные по переменной t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0baaaa@32B6@  от функции u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@  и функции из начальных условий.

Стоит отметить, что начально-краевую задачу (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ (3) можно рассматривать как обобщённую математическую модель колебательных процессов самой различной природы. В работе [1] приводится обзор различных математических моделей колебаний упругих материалов, для них устанавливается теорема единственности решения задачи Коши. В [2, 3] предлагаются алгоритмы для построения численных решений начально-краевой задачи для линейного и нелинейного псевдогиперболических уравнений. В статье [4] применяется проекционный метод Галёркина для линейного псевдогиперболического уравнения второго порядка по пространственной переменной с переменными коэффициентами. Важными результатами этой работы являются теорема единственности и оценки погрешности численного метода. Ниже рассмотрим конкретные примеры, в которых будем считать, что внешнего воздействия на колеблющуюся систему не оказывается, т.е. F(x,t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGgbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaaGimaaaa@381A@  (описание числовых параметров соответствующих моделей можно найти в источниках из предложенного списка литературы).

Пример 1 [уравнение колебаний струны]. Пусть n=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbGaaGypaiaaigdaaaa@3432@ , многочлены L 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaaaa@3435@   L 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGilaaaa@3436@   L 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaiodaaeqaaa aa@3377@  определяются соотношениями

L12n(z)=1,L22n(z)=0,L32n(z)=a2z2.

Тогда получаем (см. [5, 6]) уравнение

2ut2a22ux2=0.

Пример 2 [уравнение колебаний балки]. Пусть n=2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbGaaGypaiaaikdaaaa@3433@ , многочлены L 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaaaa@3435@   L 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGilaaaa@3436@   L 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaiodaaeqaaa aa@3377@  определяются соотношениями

L 1 2n (z)=1, L 2 2n (z)=0, L 3 2n (z)= A 2 z 4 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaaigdaaeaaca aIYaGaamOBaaaakiaaiIcacaWG6bGaaGykaiaai2dacaaIXaGaaGil aiaaywW7caWGmbWaa0baaSqaaiaaikdaaeaacaaIYaGaamOBaaaaki aaiIcacaWG6bGaaGykaiaai2dacaaIWaGaaGilaiaaywW7caWGmbWa a0baaSqaaiaaiodaaeaacaaIYaGaamOBaaaakiaaiIcacaWG6bGaaG ykaiaai2dacaWGbbWaaWbaaSqabeaacaaIYaaaaOGaamOEamaaCaaa leqabaGaaGinaaaakiaai6caaaa@4FF9@

Тогда (см. [5, 6])

2 u t 2 + A 2 4 u x 4 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhaaeaacqGHciITcaWG0bWaaWbaaSqabeaacaaI YaaaaaaakiabgUcaRiaadgeadaahaaWcbeqaaiaaikdaaaGcdaWcaa qaaiabgkGi2oaaCaaaleqabaGaaGinaaaakiaadwhaaeaacqGHciIT caWG4bWaaWbaaSqabeaacaaI0aaaaaaakiaai2dacaaIWaGaaGOlaa aa@4403@

Пример 3 [уравнение колебаний двутавровой балки] Пусть n=2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbGaaGypaiaaikdaaaa@3433@ , многочлены L 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaaaa@3435@   L 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGilaaaa@3436@   L 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaiodaaeqaaa aa@3377@  определяются соотношениями

L 1 2n (z)=1, L 2 2n (z)=0, L 3 2n (z)= a 2 z 2 + A 2 z 4 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaaigdaaeaaca aIYaGaamOBaaaakiaaiIcacaWG6bGaaGykaiaai2dacaaIXaGaaGil aiaaywW7caWGmbWaa0baaSqaaiaaikdaaeaacaaIYaGaamOBaaaaki aaiIcacaWG6bGaaGykaiaai2dacaaIWaGaaGilaiaaywW7caWGmbWa a0baaSqaaiaaiodaaeaacaaIYaGaamOBaaaakiaaiIcacaWG6bGaaG ykaiaai2dacqGHsislcaWGHbWaaWbaaSqabeaacaaIYaaaaOGaamOE amaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadgeadaahaaWcbeqaai aaikdaaaGccaWG6bWaaWbaaSqabeaacaaI0aaaaOGaaGOlaaaa@5593@

Тогда (см. [7])

 2ut2a22ux2+A24ux4=0.

Пример 4 [уравнение Аллера MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ Лыкова]. Простейшее псевдогиперболическое уравнение получается при n=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbGaaGypaiaaigdaaaa@3432@ , многочлены L 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaa aa@3375@ , L 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaa aa@3376@ , L 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaiodaaeqaaa aa@3377@  определяются соотношениями

L 1 2n (z)= A 1 , L 2 2n (z)=1 A 2 z 2 , L 3 2n (z)=D z 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaaigdaaeaaca aIYaGaamOBaaaakiaaiIcacaWG6bGaaGykaiaai2dacaWGbbWaaSba aSqaaiaaigdaaeqaaOGaaGilaiaaywW7caWGmbWaa0baaSqaaiaaik daaeaacaaIYaGaamOBaaaakiaaiIcacaWG6bGaaGykaiaai2dacaaI XaGaeyOeI0IaamyqamaaCaaaleqabaGaaGOmaaaakiaadQhadaahaa WcbeqaaiaaikdaaaGccaaISaGaaGzbVlaadYeadaqhaaWcbaGaaG4m aaqaaiaaikdacaWGUbaaaOGaaGikaiaadQhacaaIPaGaaGypaiabgk HiTiaadseacaWG6bWaaWbaaSqabeaacaaIYaaaaOGaaGOlaaaa@5589@

Имеем (см. [8])

A 1 2 u t 2 + u t A 2 3 u x 2 t D 2 2 u x 2 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGbbWaaSbaaSqaaiaaigdaaeqaaO WaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG1baabaGa eyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaWcaa qaaiabgkGi2kaadwhaaeaacqGHciITcaWG0baaaiabgkHiTiaadgea daahaaWcbeqaaiaaikdaaaGcdaWcaaqaaiabgkGi2oaaCaaaleqaba GaaG4maaaakiaadwhaaeaacqGHciITcaWG4bWaaWbaaSqabeaacaaI YaaaaOGaeyOaIyRaamiDaaaacqGHsislcaWGebWaaWbaaSqabeaaca aIYaaaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG 1baabaGaeyOaIyRaamiEamaaCaaaleqabaGaaGOmaaaaaaGccaaI9a GaaGimaiaai6caaaa@5734@

Пример 5 [уравнение колебаний движущейся струны]. Пусть n=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbGaaGypaiaaigdaaaa@3432@ , многочлены L 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaaaa@3435@   L 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGilaaaa@3436@   L 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaiodaaeqaaa aa@3377@  определяются соотношениями

  L 1 2n =1, L 2 2n =2 v 0 z, L 3 2n (z)= v 0 2 c 2 z 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaaigdaaeaaca aIYaGaamOBaaaakiaai2dacaaIXaGaaGilaiaaywW7caWGmbWaa0ba aSqaaiaaikdaaeaacaaIYaGaamOBaaaakiaai2dacaaIYaGaamODam aaBaaaleaacaaIWaaabeaakiaadQhacaaISaGaaGzbVlaadYeadaqh aaWcbaGaaG4maaqaaiaaikdacaWGUbaaaOGaaGikaiaadQhacaaIPa GaaGypamaabmaabaGaamODamaaDaaaleaacaaIWaaabaGaaGOmaaaa kiabgkHiTiaadogadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPa aacaWG6bWaaWbaaSqabeaacaaIYaaaaOGaaGOlaaaa@535B@

Тогда [9]

2 u t 2 +2 v 0 2 u xt + v 0 2 c 2 2 u x 2 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhaaeaacqGHciITcaWG0bWaaWbaaSqabeaacaaI YaaaaaaakiabgUcaRiaaikdacaWG2bWaaSbaaSqaaiaaicdaaeqaaO WaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG1baabaGa eyOaIyRaamiEaiabgkGi2kaadshaaaGaey4kaSYaaeWaaeaacaWG2b Waa0baaSqaaiaaicdaaeaacaaIYaaaaOGaeyOeI0Iaam4yamaaCaaa leqabaGaaGOmaaaaaOGaayjkaiaawMcaamaalaaabaGaeyOaIy7aaW baaSqabeaacaaIYaaaaOGaamyDaaqaaiabgkGi2kaadIhadaahaaWc beqaaiaaikdaaaaaaOGaaGypaiaaicdacaaIUaaaaa@54ED@     (4)

Пример 6 [уравнение колебаний движущегося упругого полотна]. Пусть n=2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbGaaGypaiaaikdaaaa@3433@ , многочлены L 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaaaa@3435@   L 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGilaaaa@3436@   L 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaiodaaeqaaa aa@3377@  определяются соотношениями

L 1 2n (z)=1, L 2 2n (z)=2 v 0 z, L 3 2n (z)= v 0 2 c 2 z 2 + D m z 4 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaaigdaaeaaca aIYaGaamOBaaaakiaaiIcacaWG6bGaaGykaiaai2dacaaIXaGaaGil aiaaywW7caWGmbWaa0baaSqaaiaaikdaaeaacaaIYaGaamOBaaaaki aaiIcacaWG6bGaaGykaiaai2dacaaIYaGaamODamaaBaaaleaacaaI WaaabeaakiaadQhacaaISaGaaGzbVlaadYeadaqhaaWcbaGaaG4maa qaaiaaikdacaWGUbaaaOGaaGikaiaadQhacaaIPaGaaGypamaabmaa baGaamODamaaDaaaleaacaaIWaaabaGaaGOmaaaakiabgkHiTiaado gadaahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaWG6bWaaWba aSqabeaacaaIYaaaaOGaey4kaSYaaSaaaeaacaWGebaabaGaamyBaa aacaWG6bWaaWbaaSqabeaacaaI0aaaaOGaaGOlaaaa@5CC4@

Получаем [9]

2 u t 2 +2 v 0 2 u xt + v 0 2 c 2 2 u x 2 + D m 4 u x 4 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhaaeaacqGHciITcaWG0bWaaWbaaSqabeaacaaI YaaaaaaakiabgUcaRiaaikdacaWG2bWaaSbaaSqaaiaaicdaaeqaaO WaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccaWG1baabaGa eyOaIyRaamiEaiabgkGi2kaadshaaaGaey4kaSYaaeWaaeaacaWG2b Waa0baaSqaaiaaicdaaeaacaaIYaaaaOGaeyOeI0Iaam4yamaaCaaa leqabaGaaGOmaaaaaOGaayjkaiaawMcaamaalaaabaGaeyOaIy7aaW baaSqabeaacaaIYaaaaOGaamyDaaqaaiabgkGi2kaadIhadaahaaWc beqaaiaaikdaaaaaaOGaey4kaSYaaSaaaeaacaWGebaabaGaamyBaa aadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGinaaaakiaadwhaaeaa cqGHciITcaWG4bWaaWbaaSqabeaacaaI0aaaaaaakiaai2dacaaIWa GaaGOlaaaa@5E57@     (5)

Пример 7 [уравнение колебаний движущегося вязкоупругого полотна]. Пусть n=3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGUbGaaGypaiaaiodaaaa@3434@ , многочлены L 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaigdaaeqaaO GaaGilaaaa@3435@   L 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaikdaaeqaaO GaaGilaaaa@3436@   L 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaaSbaaSqaaiaaiodaaeqaaa aa@3377@  определяются соотношениями

L 1 2n (z)=1, L 2 2n (z)=2cz+γα z 4 , L 3 2n (z)=( c 2 1) z 2 +α z 4 +γαc z 5 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaaigdaaeaaca aIYaGaamOBaaaakiaaiIcacaWG6bGaaGykaiaai2dacaaIXaGaaGil aiaaywW7caWGmbWaa0baaSqaaiaaikdaaeaacaaIYaGaamOBaaaaki aaiIcacaWG6bGaaGykaiaai2dacaaIYaGaam4yaiaadQhacqGHRaWk cqaHZoWzcqaHXoqycaWG6bWaaWbaaSqabeaacaaI0aaaaOGaaGilai aaywW7caWGmbWaa0baaSqaaiaaiodaaeaacaaIYaGaamOBaaaakiaa iIcacaWG6bGaaGykaiaai2dacaaIOaGaam4yamaaCaaaleqabaGaaG OmaaaakiabgkHiTiaaigdacaaIPaGaamOEamaaCaaaleqabaGaaGOm aaaakiabgUcaRiabeg7aHjaadQhadaahaaWcbeqaaiaaisdaaaGccq GHRaWkcqaHZoWzcqaHXoqycaWGJbGaamOEamaaCaaaleqabaGaaGyn aaaakiaai6caaaa@66A5@

В результате получаем [9]

2 u t 2 +2c 2 u xt +γα 5 u x 4 t + c 2 1 2 u x 2 +α 4 u x 4 +γαc 5 u x 5 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaadwhaaeaacqGHciITcaWG0bWaaWbaaSqabeaacaaI YaaaaaaakiabgUcaRiaaikdacaWGJbWaaSaaaeaacqGHciITdaahaa WcbeqaaiaaikdaaaGccaWG1baabaGaeyOaIyRaamiEaiabgkGi2kaa dshaaaGaey4kaSIaeq4SdCMaeqySde2aaSaaaeaacqGHciITdaahaa WcbeqaaiaaiwdaaaGccaWG1baabaGaeyOaIyRaamiEamaaCaaaleqa baGaaGinaaaakiabgkGi2kaadshaaaGaey4kaSYaaeWaaeaacaWGJb WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGymaaGaayjkaiaawMca amaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaamyDaaqaai abgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaeqyS de2aaSaaaeaacqGHciITdaahaaWcbeqaaiaaisdaaaGccaWG1baaba GaeyOaIyRaamiEamaaCaaaleqabaGaaGinaaaaaaGccqGHRaWkcqaH ZoWzcqaHXoqycaWGJbWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaiw daaaGccaWG1baabaGaeyOaIyRaamiEamaaCaaaleqabaGaaGynaaaa aaGccaaI9aGaaGimaiaai6caaaa@744F@     (6)

Для дальнейшего изложения потребуется вспомогательное утверждение.

Лемма 1. Пусть функция u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@  удовлетворяет краевым условиям (2). Тогда существуют числа α k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHXoqydaWgaaWcbaGaam4Aaaqaba aaaa@3478@ , β k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHYoGydaWgaaWcbaGaam4Aaaqaba aaaa@347A@  при k{0,1,...,n} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGRbGaeyicI4SaaG4Eaiaaicdaca aISaGaaGymaiaaiYcacaaIUaGaaGOlaiaai6cacaaISaGaamOBaiaa i2haaaa@3CEF@  такие, что имеют место тождества

  0 l 2k u x 2k u t dx= (1) k 2 0 l t ( k u x k ) 2 dx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGSb aaniabgUIiYdGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaiaa dUgaaaGccaWG1baabaGaeyOaIyRaamiEamaaCaaaleqabaGaaGOmai aadUgaaaaaaOWaaSaaaeaacqGHciITcaWG1baabaGaeyOaIyRaamiD aaaacaaMi8UaamizaiaadIhacaaI9aWaaSaaaeaacaaIOaGaeyOeI0 IaaGymaiaaiMcadaahaaWcbeqaaiaadUgaaaaakeaacaaIYaaaamaa pehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakmaalaaabaGaey OaIylabaGaeyOaIyRaamiDaaaacaaIOaWaaSaaaeaacqGHciITdaah aaWcbeqaaiaadUgaaaGccaWG1baabaGaeyOaIyRaamiEamaaCaaale qabaGaam4AaaaaaaGccaaIPaWaaWbaaSqabeaacaaMb8UaaGOmaaaa kiaadsgacaWG4bGaaGilaaaa@6215@     (7)

0 l 2k+1 u x 2k+1 u t dx=( 1) k 0 l k+1 u x k+1 k+1 u t x k dx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGSb aaniabgUIiYdGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaiaa dUgacqGHRaWkcaaIXaaaaOGaamyDaaqaaiabgkGi2kaadIhadaahaa WcbeqaaiaaikdacaWGRbGaey4kaSIaaGymaaaaaaGcdaWcaaqaaiab gkGi2kaadwhaaeaacqGHciITcaWG0baaaiaayIW7caWGKbGaamiEai aai2dacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadUga aaGcdaWdXbqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGcdaWcaa qaaiabgkGi2oaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGccaWG 1baabaGaeyOaIyRaamiEamaaCaaaleqabaGaam4AaiabgUcaRiaaig daaaaaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaadUgacqGHRaWk caaIXaaaaOGaamyDaaqaaiabgkGi2kaadshacqGHciITcaWG4bWaaW baaSqabeaacaWGRbaaaaaakiaayIW7caWGKbGaamiEaiaaiYcaaaa@6CB4@     (8)

0 l 2k+1 u x 2k t u t dx=( 1) k 0 l ( t k u x k ) 2 dx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGSb aaniabgUIiYdGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaiaa dUgacqGHRaWkcaaIXaaaaOGaamyDaaqaaiabgkGi2kaadIhadaahaa WcbeqaaiaaikdacaWGRbaaaOGaeyOaIyRaamiDaaaadaWcaaqaaiab gkGi2kaadwhaaeaacqGHciITcaWG0baaaiaayIW7caWGKbGaamiEai aai2dacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadUga aaGcdaWdXbqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaaIOa WaaSaaaeaacqGHciITaeaacqGHciITcaWG0baaamaalaaabaGaeyOa Iy7aaWbaaSqabeaacaWGRbaaaOGaamyDaaqaaiabgkGi2kaadIhada ahaaWcbeqaaiaadUgaaaaaaOGaaGykamaaCaaaleqabaGaaGzaVlaa ikdaaaGccaWGKbGaamiEaiaaiYcaaaa@6545@     (9)

0 l ( 2k+1 u x 2k+1 ) u t dx= (1) k 2 ( k+1 u x k t ) 2 | x=0 x=l , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGSb aaniabgUIiYdGccaaIOaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaa ikdacaWGRbGaey4kaSIaaGymaaaakiaadwhaaeaacqGHciITcaWG4b WaaWbaaSqabeaacaaIYaGaam4AaiabgUcaRiaaigdaaaaaaOGaaGyk amaalaaabaGaeyOaIyRaamyDaaqaaiabgkGi2kaadshaaaGaaGjcVl aadsgacaWG4bGaaGypamaalaaabaGaaGikaiabgkHiTiaaigdacaaI PaWaaWbaaSqabeaacaWGRbaaaaGcbaGaaGOmaaaacaaIOaWaaSaaae aacqGHciITdaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaamyD aaqaaiabgkGi2kaadIhadaahaaWcbeqaaiaadUgaaaGccqGHciITca WG0baaaiaaiMcadaahaaWcbeqaaiaaygW7caaIYaaaaOGaaGiFamaa DaaaleaacaWG4bGaaGypaiaaicdaaeaacaWG4bGaaGypaiaadYgaaa GccaaISaaaaa@6746@      (10)

0 l ( 2k x 2k 2 u t 2 ) u t dx= (1) k 2 0 l t ( k+1 u t x k ) 2 dx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGSb aaniabgUIiYdGccaaIOaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaa ikdacaWGRbaaaaGcbaGaeyOaIyRaamiEamaaCaaaleqabaGaaGOmai aadUgaaaaaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGc caWG1baabaGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGcca aIPaWaaSaaaeaacqGHciITcaWG1baabaGaeyOaIyRaamiDaaaacaaM i8UaamizaiaadIhacaaI9aWaaSaaaeaacaaIOaGaeyOeI0IaaGymai aaiMcadaahaaWcbeqaaiaadUgaaaaakeaacaaIYaaaamaapehabeWc baGaaGimaaqaaiaadYgaa0Gaey4kIipakmaalaaabaGaeyOaIylaba GaeyOaIyRaamiDaaaacaaIOaWaaSaaaeaacqGHciITdaahaaWcbeqa aiaadUgacqGHRaWkcaaIXaaaaOGaamyDaaqaaiabgkGi2kaadshacq GHciITcaWG4bWaaWbaaSqabeaacaWGRbaaaaaakiaaiMcadaahaaWc beqaaiaaygW7caaIYaaaaOGaamizaiaadIhacaaISaaaaa@6D31@     (11)

0 l ( 2k+1 x 2k+1 2 u t 2 ) u t dx=( 1) k+1 0 l t ( k+1 u t x k ) x ( k+1 u t x k )dx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGSb aaniabgUIiYdGccaaIOaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaa ikdacaWGRbGaey4kaSIaaGymaaaaaOqaaiabgkGi2kaadIhadaahaa WcbeqaaiaaikdacaWGRbGaey4kaSIaaGymaaaaaaGcdaWcaaqaaiab gkGi2oaaCaaaleqabaGaaGOmaaaakiaadwhaaeaacqGHciITcaWG0b WaaWbaaSqabeaacaaIYaaaaaaakiaaiMcadaWcaaqaaiabgkGi2kaa dwhaaeaacqGHciITcaWG0baaaiaayIW7caWGKbGaamiEaiaai2daca aIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadUgacqGHRaWk caaIXaaaaOWaa8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aO WaaSaaaeaacqGHciITaeaacqGHciITcaWG0baaaiaaiIcadaWcaaqa aiabgkGi2oaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGccaWG1b aabaGaeyOaIyRaamiDaiabgkGi2kaadIhadaahaaWcbeqaaiaadUga aaaaaOGaaGykamaalaaabaGaeyOaIylabaGaeyOaIyRaamiEaaaaca aIOaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaadUgacqGHRaWkcaaI XaaaaOGaamyDaaqaaiabgkGi2kaadshacqGHciITcaWG4bWaaWbaaS qabeaacaWGRbaaaaaakiaaiMcacaaMi8UaamizaiaadIhacaaIUaaa aa@80AD@     (12)

Доказательство. Для доказательства необходимо применить формулу интегрирования по частям к интегралам, стоящим слева от знака равенства в формулах (7) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ (12), и учесть краевые условия (2) при соответствующих значениях α k , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHXoqydaWgaaWcbaGaam4Aaaqaba GccaaISaaaaa@3538@   β k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHYoGydaWgaaWcbaGaam4Aaaqaba aaaa@347A@ .

Далее поставим дополнительные ограничения на операторы L12n/x, L32n/x, на которые существенно будем опираться в дальнейшем. Введём обозначения: Ω(τ):=(x,t): MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqqHPoWvcaaIOaGaeqiXdqNaaGykai aaiQdacaaI9aGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI6aaa aa@3CD5@   x(0,l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG4bGaeyicI4SaaGikaiaaicdaca aISaGaamiBaiaaiMcaaaa@3804@ , t(0,τ)} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bGaeyicI4SaaGikaiaaicdaca aISaGaeqiXdqNaaGykaiaai2haaaa@39DB@ , Ω:=Ω(T) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqqHPoWvcaaI6aGaaGypaiabfM6axj aaiIcacaWGubGaaGykaaaa@38A2@ ; W ^ 2,2n (Ω(τ)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaqiaaqaaiaadEfaaiaawkWaamaaCa aaleqabaGaaGOmaiaaiYcacaaIYaGaamOBaaaakiaaiIcacqqHPoWv caaIOaGaeqiXdqNaaGykaiaaiMcaaaa@3CD0@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  множество функций, которые удовлетворяют краевым условиям (2), имеют производные до второго порядка по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0baaaa@32B6@  и производные до порядка 2n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIYaGaamOBaaaa@336C@  по переменной x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG4baaaa@32BA@  и интегрируемы с квадратом по области Ω MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqqHPoWvaaa@334B@ .

Пусть операторы Lj2n/x симметричные при j= 1,3 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGQbGaaGypamaanaaabaGaaGymai aaiYcacaaIZaaaaaaa@35B2@ , т.е. для любых функций v 1 , v 2 W ^ 2,2n (Ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG2bWaaSbaaSqaaiaaigdaaeqaaO GaaGilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccqGHiiIZdaqiaaqa aiaadEfaaiaawkWaamaaCaaaleqabaGaaGOmaiaaiYcacaaIYaGaam OBaaaakiaaiIcacqqHPoWvcaaIPaaaaa@3FB9@  имеет место тождество

  ( L j 2n ( x ) v 1 , v 2 )=( v 1 , L j 2n ( x ) v 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamitamaaDaaaleaacaWGQb aabaGaaGOmaiaad6gaaaGccaaIOaWaaSaaaeaacqGHciITaeaacqGH ciITcaWG4baaaiaaiMcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaG ilaiaadAhadaWgaaWcbaGaaGOmaaqabaGccaaIPaGaaGypaiaaiIca caWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaGilaiaadYeadaqhaaWcba GaamOAaaqaaiaaikdacaWGUbaaaOGaaGikamaalaaabaGaeyOaIyla baGaeyOaIyRaamiEaaaacaaIPaGaamODamaaBaaaleaacaaIYaaabe aakiaaiMcacaaISaaaaa@50EA@     (13)

где (,) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaeyyXICTaaGilaiabgwSixl aaiMcaaaa@386C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  скалярное произведение, определяемое формулой v 1 , v 2 = 0 l v 1 v 2 dx MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaqadaqaaiaadAhadaWgaaWcbaGaaG ymaaqabaGccaaISaGaamODamaaBaaaleaacaaIYaaabeaaaOGaayjk aiaawMcaaiaai2dadaWdXaqabSqaaiaaicdaaeaacaWGSbaaniabgU IiYdGccaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaamODamaaBaaaleaa caaIYaaabeaakiaadsgacaWG4baaaa@423A@ . Также потребуем, чтобы эти операторы были положительно определены, т.е. потребуем выполнения неравенства

( L j 2n ( x ) v 1 , v 1 ) C j v 1 , v 1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamitamaaDaaaleaacaWGQb aabaGaaGOmaiaad6gaaaGccaaIOaWaaSaaaeaacqGHciITaeaacqGH ciITcaWG4baaaiaaiMcacaWG2bWaaSbaaSqaaiaaigdaaeqaaOGaaG ilaiaadAhadaWgaaWcbaGaaGymaaqabaGccaaIPaGaeyyzImRaam4q amaaBaaaleaacaWGQbaabeaakmaabmaabaGaamODamaaBaaaleaaca aIXaaabeaakiaaiYcacaWG2bWaaSbaaSqaaiaaigdaaeqaaaGccaGL OaGaayzkaaGaaGilaaaa@4B14@     (14)

где C j >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGdbWaaSbaaSqaaiaadQgaaeqaaO GaaGOpaiaaicdaaaa@352C@ , j= 1,3 ¯ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGQbGaaGypamaanaaabaGaaGymai aaiYcacaaIZaaaaaaa@35B2@ . Так, при p k 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGWbWaaSbaaSqaaiaadUgaaeqaaO GaeyiyIKRaaGimaaaa@3659@  дифференциальный оператор

  L( x ):= k=0 n (1) k p k 2 2k x 2k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbGaaGikamaalaaabaGaeyOaIy labaGaeyOaIyRaamiEaaaacaaIPaGaaGOoaiaai2dadaaeWbqabSqa aiaadUgacaaI9aGaaGimaaqaaiaad6gaa0GaeyyeIuoakiaaiIcacq GHsislcaaIXaGaaGykamaaCaaaleqabaGaam4Aaaaakiaadchadaqh aaWcbaGaam4AaaqaaiaaikdaaaGcdaWcaaqaaiabgkGi2oaaCaaale qabaGaaGOmaiaadUgaaaaakeaacqGHciITcaWG4bWaaWbaaSqabeaa caaIYaGaam4Aaaaaaaaaaa@4DA9@     (15)

является примером симметричного положительного оператора на пространстве функций, удовлетворяющих краевым условиям (2).

В этой работе будем говорить о слабых решениях задачи (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ (3), т.е. таких функциях u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@ , которые для любых v(x) H 0 2n (0;l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG2bGaaGikaiaadIhacaaIPaGaey icI4SaamisamaaDaaaleaacaaIWaaabaGaaGOmaiaad6gaaaGccaaI OaGaaGimaiaaiUdacaWGSbGaaGykaaaa@3DE0@  и для любого t 0;T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0bGaeyicI48aamWaaeaacaaIWa GaaG4oaiaadsfaaiaawUfacaGLDbaaaaa@3884@  при u(x,t) H 0 2n (0;l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGibWaa0baaSqaaiaaicdaaeaacaaIYaGa amOBaaaakiaaiIcacaaIWaGaaG4oaiaadYgacaaIPaaaaa@3F8E@ , F(x,t) L 2 (0;l) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGgbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcaWGmbWaaWbaaSqabeaacaaIYaaaaOGaaGik aiaaicdacaaI7aGaamiBaiaaiMcaaaa@3DB6@  удовлетворяют тождеству

( L 1 2n ( x ) 2 u t 2 ,v)+( L 2 2n ( x ) u t ,v)+( L 3 2n ( x )u,v)=(F(x,t),v(x)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamitamaaDaaaleaacaaIXa aabaGaaGOmaiaad6gaaaGccaaIOaWaaSaaaeaacqGHciITaeaacqGH ciITcaWG4baaaiaaiMcadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaG OmaaaakiaadwhaaeaacqGHciITcaWG0bWaaWbaaSqabeaacaaIYaaa aaaakiaaiYcacaWG2bGaaGykaiabgUcaRiaaiIcacaWGmbWaa0baaS qaaiaaikdaaeaacaaIYaGaamOBaaaakiaaiIcadaWcaaqaaiabgkGi 2cqaaiabgkGi2kaadIhaaaGaaGykamaalaaabaGaeyOaIyRaamyDaa qaaiabgkGi2kaadshaaaGaaGilaiaadAhacaaIPaGaey4kaSIaaGik aiaadYeadaqhaaWcbaGaaG4maaqaaiaaikdacaWGUbaaaOGaaGikam aalaaabaGaeyOaIylabaGaeyOaIyRaamiEaaaacaaIPaGaamyDaiaa iYcacaWG2bGaaGykaiaai2dacaaIOaGaamOraiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaaGilaiaadAhacaaIOaGaamiEaiaaiMcacaaI PaGaaGOlaaaa@6F27@     (16)

Стоит обратить внимание на вопрос существования решения таких задач. Так, например, следуя [5], с использованием метода Галёркина можно построить последовательность конечномерных приближений, которая в слабом смысле будет сходиться к решению, которое удовлетворяет тождеству (16).

Пусть оператор L12n/x имеет вид (15), т.е.

p 1,r = 0, r=2k+1, (1) k p 2k 2 , r=2k. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGWbWaaSbaaSqaaiaaigdacaaISa GaamOCaaqabaGccaaI9aWaaiqaaeaafaqabeGacaaabaGaaGimaiaa iYcaaeaacaWGYbGaaGypaiaaikdacaWGRbGaey4kaSIaaGymaiaaiY caaeaacaaIOaGaeyOeI0IaaGymaiaaiMcadaahaaWcbeqaaiaadUga aaGccaWGWbWaa0baaSqaaiaaikdacaWGRbaabaGaaGOmaaaakiaaiY caaeaacaWGYbGaaGypaiaaikdacaWGRbGaaGOlaaaaaiaawUhaaaaa @4B0E@

Далее введём на множестве W ^ 2,2n (Ω) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaqiaaqaaiaadEfaaiaawkWaamaaCa aaleqabaGaaGOmaiaaiYcacaaIYaGaamOBaaaakiaaiIcacqqHPoWv caaIPaaaaa@39A6@  новое скалярное произведение

[u,v]=( L 1 2n ( x )u,v). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIBbGaamyDaiaaiYcacaWG2bGaaG yxaiaai2dacaaIOaGaamitamaaDaaaleaacaaIXaaabaGaaGOmaiaa d6gaaaGccaaIOaWaaSaaaeaacqGHciITaeaacqGHciITcaWG4baaai aaiMcacaWG1bGaaGilaiaadAhacaaIPaGaaGOlaaaa@4473@     (17)

Формула (17) при p 0 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGWbWaaSbaaSqaaiaaicdaaeqaaO GaeyiyIKRaaGimaaaa@3623@  корректно определяет скалярное произведение в силу построения оператора L12n/x, симметричность следует из равенства (13), положительная определённость MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  из (14).

Лемма 2. Имеет место неравенство

w 2 2 σ l w L 1 2n 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG3bGae8xjIa1aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaeyiz ImQaeq4Wdm3aaSbaaSqaaiaadYgaaeqaaOGae8xjIaLaam4Daiab=v IiqnaaDaaaleaacaWGmbWaa0baaeaacaaIXaaabaGaaGOmaiaad6ga aaaabaGaaGOmaaaakiaaiYcaaaa@4814@

где w 2 2 =(w,w), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG3bGae8xjIa1aa0baaSqaaiaaikdaaeaacaaIYaaaaOGaaGyp aiaaiIcacaWG3bGaaGilaiaadEhacaaIPaGaaGilaaaa@40CB@   w L 1 2n 2 =[w,w], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG3bGae8xjIa1aa0baaSqaaiaadYeadaqhaaqaaiaaigdaaeaa caaIYaGaamOBaaaaaeaacaaIYaaaaOGaaGypaiaaiUfacaWG3bGaaG ilaiaadEhacaaIDbGaaGilaaaa@43D3@  σl=1/(L12n(1/l)).

Доказательство. В силу формулы Ньютона MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ Лейбница, свойств интеграла и неравенства треугольника имеем

|w(x,t)||w(0,t)||w(x,t)w(0,t)|=| 0 x w x dx| 0 x | w x |dx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI8bGaam4DaiaaiIcacaWG4bGaaG ilaiaadshacaaIPaGaaGiFaiabgkHiTiaaiYhacaWG3bGaaGikaiaa icdacaaISaGaamiDaiaaiMcacaaI8bGaeyizImQaaGiFaiaadEhaca aIOaGaamiEaiaaiYcacaWG0bGaaGykaiabgkHiTiaadEhacaaIOaGa aGimaiaaiYcacaWG0bGaaGykaiaaiYhacaaI9aGaaGiFamaapehabe WcbaGaaGimaaqaaiaadIhaa0Gaey4kIipakmaalaaabaGaeyOaIyRa am4DaaqaaiabgkGi2kaadIhaaaGaamizaiaadIhacaaI8bGaeyizIm 6aa8qCaeqaleaacaaIWaaabaGaamiEaaqdcqGHRiI8aOGaaGjcVlaa iYhadaWcaaqaaiabgkGi2kaadEhaaeaacqGHciITcaWG4baaaiaaiY hacaWGKbGaamiEaiaai6caaaa@6DC7@     (18)

После возведения в квадрат получаем соотношения

w20lwxdx2+2wx,t w0,t0lwxdx2+2w0,𝑡maxx[0,l]wx,t,

и, применив неравенство Гёльдера,

|w | 2 l C w 0 l ( w x ) 2 dx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI8bGaam4DaiaaiYhadaahaaWcbe qaaiaaikdaaaGccqGHKjYOcaWGSbGaam4qamaaBaaaleaacaWG3baa beaakmaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiI cadaWcaaqaaiabgkGi2kaadEhaaeaacqGHciITcaWG4baaaiaaiMca daahaaWcbeqaaiaaygW7caaIYaaaaOGaamizaiaadIhacaaISaaaaa@49CA@     (19)

где

C w =1+2|w(0,t)| max x[0,l] |w(x,t)|/(l 0 l ( w x ) 2 dx). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGdbWaaSbaaSqaaiaadEhaaeqaaO GaaGypaiaaigdacqGHRaWkcaaIYaGaaGiFaiaadEhacaaIOaGaaGim aiaaiYcacaWG0bGaaGykaiaaiYhadaGfqbqabSqaaiaadIhacqGHii IZcaaIBbGaaGimaiaaiYcacaWGSbGaaGyxaaqabOqaaiGac2gacaGG HbGaaiiEaaaacaaI8bGaam4DaiaaiIcacaWG4bGaaGilaiaadshaca aIPaGaaGiFaiaai+cacaaIOaGaamiBamaapehabeWcbaGaaGimaaqa aiaadYgaa0Gaey4kIipakiaaiIcadaWcaaqaaiabgkGi2kaadEhaae aacqGHciITcaWG4baaaiaaiMcadaahaaWcbeqaaiaaygW7caaIYaaa aOGaamizaiaadIhacaaIPaGaaGOlaaaa@614F@

С помощью леммы и неравенства (19) оценим слагаемые в выражении нормы, порождённой оператором L 1 2n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaaigdaaeaaca aIYaGaamOBaaaaaaa@3525@ :

w L 1 2n 2 =( L 1 2n ( x )w,w)= 0 l k=0 n p 2k 2 ( k w x k ) 2 dx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG3bGae8xjIa1aa0baaSqaaiaadYeadaqhaaqaaiaaigdaaeaa caaIYaGaamOBaaaaaeaacaaIYaaaaOGaaGypaiaaiIcacaWGmbWaa0 baaSqaaiaaigdaaeaacaaIYaGaamOBaaaakiaaiIcadaWcaaqaaiab gkGi2cqaaiabgkGi2kaadIhaaaGaaGykaiaadEhacaaISaGaam4Dai aaiMcacaaI9aWaa8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8 aOGaaGjcVpaaqahabeWcbaGaam4Aaiaai2dacaaIWaaabaGaamOBaa qdcqGHris5aOGaamiCamaaDaaaleaacaaIYaGaam4Aaaqaaiaaikda aaGccaaIOaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaadUgaaaGcca WG3baabaGaeyOaIyRaamiEamaaCaaaleqabaGaam4AaaaaaaGccaaI PaWaaWbaaSqabeaacaaMb8UaaGOmaaaakiaadsgacaWG4bGaaGOlaa aa@68C5@     (20)

Заметим, что неравенство (19) можно применять для производных, тогда получим

| s w x s | 2 l C s w x s 0 l ( s+1 w x s+1 ) 2 dx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI8bWaaSaaaeaacqGHciITdaahaa WcbeqaaiaadohaaaGccaWG3baabaGaeyOaIyRaamiEamaaCaaaleqa baGaam4CaaaaaaGccaaI8bWaaWbaaSqabeaacaaIYaaaaOGaeyizIm QaamiBaiaadoeadaWgaaWcbaWaaSaaaeaacqGHciITdaahaaqabeaa caWGZbaaaiaadEhaaeaacqGHciITcaWG4bWaaWbaaeqabaGaam4Caa aaaaaabeaakmaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipa kiaaiIcadaWcaaqaaiabgkGi2oaaCaaaleqabaGaam4CaiabgUcaRi aaigdaaaGccaWG3baabaGaeyOaIyRaamiEamaaCaaaleqabaGaam4C aiabgUcaRiaaigdaaaaaaOGaaGykamaaCaaaleqabaGaaGzaVlaaik daaaGccaWGKbGaamiEaiaaiYcaaaa@5BA6@

откуда следует, что для любых s{0,1,...,2n1} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGZbGaeyicI4SaaG4Eaiaaicdaca aISaGaaGymaiaaiYcacaaIUaGaaGOlaiaai6cacaaISaGaaGOmaiaa d6gacqGHsislcaaIXaGaaGyFaaaa@3F5B@  выполняется оценка

s w x s 2 2 l 2 C s w x s s+1 w x s+1 2 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cudaWcaaqaaiabgkGi2oaaCaaaleqabaGaam4CaaaakiaadEhaaeaa cqGHciITcaWG4bWaaWbaaSqabeaacaWGZbaaaaaakiab=vIiqnaaDa aaleaacaaIYaaabaGaaGOmaaaakiabgsMiJkaadYgadaahaaWcbeqa aiaaikdaaaGccaWGdbWaaSbaaSqaamaalaaabaGaeyOaIy7aaWbaae qabaGaam4CaaaacaWG3baabaGaeyOaIyRaamiEamaaCaaabeqaaiaa dohaaaaaaaqabaGccqWFLicudaWcaaqaaiabgkGi2oaaCaaaleqaba Gaam4CaiabgUcaRiaaigdaaaGccaWG3baabaGaeyOaIyRaamiEamaa CaaaleqabaGaam4CaiabgUcaRiaaigdaaaaaaOGae8xjIa1aa0baaS qaaiaaikdaaeaacaaIYaaaaOGaaGOlaaaa@5C1E@     (21)

Поменяем в (20) порядок интегрирования и суммирования и применим неравенство (21):

w L 1 2n 2 = k=0 n p 2k 2 0 l ( k w x k ) 2 dx= k=0 n p 2k 2 k w x k 2 2 w 2 2 k=0 n p 2k 2 l 2k ( s=0 k C s w x s ) 1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG3bGae8xjIa1aa0baaSqaaiaadYeadaqhaaqaaiaaigdaaeaa caaIYaGaamOBaaaaaeaacaaIYaaaaOGaaGypamaaqahabeWcbaGaam 4Aaiaai2dacaaIWaaabaGaamOBaaqdcqGHris5aOGaamiCamaaDaaa leaacaaIYaGaam4AaaqaaiaaikdaaaGcdaWdXbqabSqaaiaaicdaae aacaWGSbaaniabgUIiYdGccaaIOaWaaSaaaeaacqGHciITdaahaaWc beqaaiaadUgaaaGccaWG3baabaGaeyOaIyRaamiEamaaCaaaleqaba Gaam4AaaaaaaGccaaIPaWaaWbaaSqabeaacaaMb8UaaGOmaaaakiaa dsgacaWG4bGaaGypamaaqahabeWcbaGaam4Aaiaai2dacaaIWaaaba GaamOBaaqdcqGHris5aOGaamiCamaaDaaaleaacaaIYaGaam4Aaaqa aiaaikdaaaGccqWFLicudaWcaaqaaiabgkGi2oaaCaaaleqabaGaam 4AaaaakiaadEhaaeaacqGHciITcaWG4bWaaWbaaSqabeaacaWGRbaa aaaakiab=vIiqnaaDaaaleaacaaIYaaabaGaaGOmaaaakiabgwMiZk ab=vIiqjaadEhacqWFLicudaqhaaWcbaGaaGOmaaqaaiaaikdaaaGc daaeWbqabSqaaiaadUgacaaI9aGaaGimaaqaaiaad6gaa0GaeyyeIu oakmaalaaabaGaamiCamaaDaaaleaacaaIYaGaam4Aaaqaaiaaikda aaaakeaacaWGSbWaaWbaaSqabeaacaaIYaGaam4AaaaaaaGccaaIOa WaaebCaeqaleaacaWGZbGaaGypaiaaicdaaeaacaWGRbaaniabg+Gi vdGccaWGdbWaaSbaaSqaamaalaaabaGaeyOaIy7aaWbaaeqabaGaam 4CaaaacaWG3baabaGaeyOaIyRaamiEamaaCaaabeqaaiaadohaaaaa aaqabaGccaaIPaWaaWbaaSqabeaacaaMb8UaeyOeI0IaaGymaaaaki aai6caaaa@940C@

Так как min𝑠{0,1,...,𝑛} Cswxs=1, то окончательно получим

w L 1 2n 2 L 1 2n ( 1 l )w 2 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaarqqr1ngBPrgifHhDYfgaiqaacqWFLi cucaWG3bGae8xjIa1aa0baaSqaaiaadYeadaqhaaqaaiaaigdaaeaa caaIYaGaamOBaaaaaeaacaaIYaaaaOGaeyyzImRaamitamaaDaaale aacaaIXaaabaGaaGOmaiaad6gaaaGccaaIOaWaaSaaaeaacaaIXaaa baGaamiBaaaacaaIPaGae8xjIaLaam4Daiab=vIiqnaaDaaaleaaca aIYaaabaGaaGOmaaaakiaai6caaaa@4BD0@

Полагая σl=1/(L12n(1/l)), завершаем доказательство леммы 2.

2. Задача управления

Рассмотрим уравнение (1) с краевыми условиями (2) и начальными условиями (3). Мы можем выбрать функцию F(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGgbGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@3699@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  правую часть уравнения (1). Пусть множество

Φ:={F(x,t): 0 T 0 l F 2 (x,t)dxdt<+}. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqqHMoGrcaaI6aGaaGypaiaaiUhaca WGgbGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaI6aWaa8qCaeqa leaacaaIWaaabaGaamivaaqdcqGHRiI8aOWaa8qCaeqaleaacaaIWa aabaGaamiBaaqdcqGHRiI8aOGaamOramaaCaaaleqabaGaaGOmaaaa kiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGjcVlaadsgacaWG4b GaaGjcVlaadsgacaWG0bGaaGipaiabgUcaRiabg6HiLkaai2hacaaI Uaaaaa@551E@

Наша цель MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  определить функцию fΦ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGMbGaeyicI4SaeuOPdyeaaa@35A6@ , которая доставляет минимум функционалу

  J(f)= u(x,T,f) y 0 (x) 2 2 + u t (x,T,f) y 1 (x) 2 2 + 1 ε 2 0 l 0 T f 2 (x,t)dtdx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGkbGaaGikaiaadAgacaaIPaGaaG ypamaafmaabaGaamyDaiaaiIcacaWG4bGaaGilaiaadsfacaaISaGa amOzaiaaiMcacqGHsislcaWG5bWaaSbaaSqaaiaaicdaaeqaaOGaaG ikaiaadIhacaaIPaaacaGLjWUaayPcSdWaa0baaSqaaiaaikdaaeaa caaIYaaaaOGaey4kaSseeuuDJXwAKbsr4rNCHbaceaGae8xjIa1aaS aaaeaacqGHciITcaWG1baabaGaeyOaIyRaamiDaaaacaaIOaGaamiE aiaaiYcacaWGubGaaGilaiaadAgacaaIPaGaeyOeI0IaamyEamaaBa aaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGykaiab=vIiqnaaDaaa leaacaaIYaaabaGaaGOmaaaakiabgUcaRmaalaaabaGaaGymaaqaai abew7aLnaaCaaaleqabaGaaGOmaaaaaaGcdaWdXbqabSqaaiaaicda aeaacaWGSbaaniabgUIiYdGcdaWdXbqabSqaaiaaicdaaeaacaWGub aaniabgUIiYdGccaWGMbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaa dIhacaaISaGaamiDaiaaiMcacaaMi8UaamizaiaadshacaWGKbGaam iEaiaaiYcaaaa@77B0@     (22)

где y 0 (x), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadIhacaaIPaGaaGilaaaa@36C3@   y 1 (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaIPaaaaa@360E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  заданные функции; ε, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH1oqzcaaISaaaaa@341A@   T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubaaaa@3296@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  заданные положительные числа. Такой вид функционала рассматривается в работах [6, 10]. Другими словами, необходимо определить функцию f MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGMbaaaa@32A8@  такую, что к заданному моменту времени T MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGubaaaa@3296@  решение задачи (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ (3) приблизится к функции y 0 (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadIhacaaIPaaaaa@360D@ , а производная решения по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0baaaa@32B6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  к y 1 (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaIPaaaaa@360E@ . Заметим, что если y 0 (x)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaicdaaeqaaO GaaGikaiaadIhacaaIPaGaeyyyIORaaGimaaaa@3890@ , y 1 (x)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG5bWaaSbaaSqaaiaaigdaaeqaaO GaaGikaiaadIhacaaIPaGaeyyyIORaaGimaaaa@3891@ , то задача состоит в гашении колебаний к заданному моменту времени.

Вместо (22) можно рассмотреть функционал

J L 1 2n (f)= u(x,T,f) y 0 (x) L 1 2n 2 + u t (x,T,f) y 1 (x) L 1 2n 2 + C ε 0 l 0 T f 2 (x,t)dtdx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGkbWaaSbaaSqaaiaadYeadaqhaa qaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGikaiaadAgacaaI PaGaaGypamaafmaabaGaamyDaiaaiIcacaWG4bGaaGilaiaadsfaca aISaGaamOzaiaaiMcacqGHsislcaWG5bWaaSbaaSqaaiaaicdaaeqa aOGaaGikaiaadIhacaaIPaaacaGLjWUaayPcSdWaa0baaSqaaiaadY eadaqhaaqaaiaaigdaaeaacaaIYaGaamOBaaaaaeaacaaIYaaaaOGa ey4kaSseeuuDJXwAKbsr4rNCHbaceaGae8xjIa1aaSaaaeaacqGHci ITcaWG1baabaGaeyOaIyRaamiDaaaacaaIOaGaamiEaiaaiYcacaWG ubGaaGilaiaadAgacaaIPaGaeyOeI0IaamyEamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG4bGaaGykaiab=vIiqnaaDaaaleaacaWGmbWa a0baaeaacaaIXaaabaGaaGOmaiaad6gaaaaabaGaaGOmaaaakiabgU caRiaadoeadaWgaaWcbaGaeqyTdugabeaakmaapehabeWcbaGaaGim aaqaaiaadYgaa0Gaey4kIipakmaapehabeWcbaGaaGimaaqaaiaads faa0Gaey4kIipakiaadAgadaahaaWcbeqaaiaaikdaaaGccaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaayIW7caWGKbGaamiDaiaadsgaca WG4bGaaGilaaaa@7FC5@     (23)

где Cε=1/(σlε2).

Теорема 1 [об оценке функционала]. Имеет место неравенство

  J(f) σ l J L 1 2n (f). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGkbGaaGikaiaadAgacaaIPaGaey izImQaeq4Wdm3aaSbaaSqaaiaadYgaaeqaaOGaamOsamaaBaaaleaa caWGmbWaa0baaeaacaaIXaaabaGaaGOmaiaad6gaaaaabeaakiaaiI cacaWGMbGaaGykaiaai6caaaa@40E5@

Доказательство. Воспользуемся леммой для первого и второго слагаемых в (22). Тогда, очевидно, получим

J(f) σ l ( u(x,T,f) y 0 (x) L 1 2n 2 + u t (x,T,f) y 1 (x) L 1 2n 2 + 1 σ l ε 2 0 l 0 T f 2 (x,t)dtdx). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGkbGaaGikaiaadAgacaaIPaGaey izImQaeq4Wdm3aaSbaaSqaaiaadYgaaeqaaOGaaGikamaafmaabaGa amyDaiaaiIcacaWG4bGaaGilaiaadsfacaaISaGaamOzaiaaiMcacq GHsislcaWG5bWaaSbaaSqaaiaaicdaaeqaaOGaaGikaiaadIhacaaI PaaacaGLjWUaayPcSdWaa0baaSqaaiaadYeadaqhaaqaaiaaigdaae aacaaIYaGaamOBaaaaaeaacaaIYaaaaOGaey4kaSseeuuDJXwAKbsr 4rNCHbaceaGae8xjIa1aaSaaaeaacqGHciITcaWG1baabaGaeyOaIy RaamiDaaaacaaIOaGaamiEaiaaiYcacaWGubGaaGilaiaadAgacaaI PaGaeyOeI0IaamyEamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4b GaaGykaiab=vIiqnaaDaaaleaacaWGmbWaa0baaeaacaaIXaaabaGa aGOmaiaad6gaaaaabaGaaGOmaaaakiabgUcaRmaalaaabaGaaGymaa qaaiabeo8aZnaaBaaaleaacaWGSbaabeaakiabew7aLnaaCaaaleqa baGaaGOmaaaaaaGcdaWdXbqabSqaaiaaicdaaeaacaWGSbaaniabgU IiYdGcdaWdXbqabSqaaiaaicdaaeaacaWGubaaniabgUIiYdGccaWG MbWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadIhacaaISaGaamiDai aaiMcacaaMi8UaamizaiaadshacaWGKbGaamiEaiaaiMcacaaIUaaa aa@851B@

Положив Cε=1/(σlε2), завершим доказательство теоремы.

Отметим, что если J L 1 2n ( f m )0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGkbWaaSbaaSqaaiaadYeadaqhaa qaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGikaiaadAgadaWg aaWcbaGaamyBaaqabaGccaaIPaGaeyOKH4QaaGimaaaa@3C3E@  при m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGTbGaeyOKH4QaeyOhIukaaa@360D@ , то в силу неравенства из теоремы получим J( f m )0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGkbGaaGikaiaadAgadaWgaaWcba GaamyBaaqabaGccaaIPaGaeyOKH4QaaGimaaaa@38AB@  при m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGTbGaeyOKH4QaeyOhIukaaa@360D@ . Далее, если определим минимизирующую последовательность функций f m Φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGMbWaaSbaaSqaaiaad2gaaeqaaO GaeyicI4SaeuOPdyeaaa@36CE@  такую, что limmJL12nfmJL12nf (здесь f Φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGMbWaaWbaaSqabeaacqGHxiIkaa GccqGHiiIZcqqHMoGraaa@36CC@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  функция, доставляющая минимум функционалу (23)), то будет найден не оптимальный, а квазиоптимальный режим.

Перепишем формулу (23) в более удобном виде:

J L 1 2n (f)=(u(x,T,f) y 0 (x),u(x,T,f) y 0 (x))+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGkbWaaSbaaSqaaiaadYeadaqhaa qaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGikaiaadAgacaaI PaGaaGypaiaaiIcacaWG1bGaaGikaiaadIhacaaISaGaamivaiaaiY cacaWGMbGaaGykaiabgkHiTiaadMhadaWgaaWcbaGaaGimaaqabaGc caaIOaGaamiEaiaaiMcacaaISaGaamyDaiaaiIcacaWG4bGaaGilai aadsfacaaISaGaamOzaiaaiMcacqGHsislcaWG5bWaaSbaaSqaaiaa icdaaeqaaOGaaGikaiaadIhacaaIPaGaaGykaiabgUcaRaaa@53C5@

+( u t (x,T,f) y 1 (x), u t (x,T,f) y 1 (x))+ C ε (f,f). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqGHRaWkcaaIOaWaaSaaaeaacqGHci ITcaWG1baabaGaeyOaIyRaamiDaaaacaaIOaGaamiEaiaaiYcacaWG ubGaaGilaiaadAgacaaIPaGaeyOeI0IaamyEamaaBaaaleaacaaIXa aabeaakiaaiIcacaWG4bGaaGykaiaaiYcadaWcaaqaaiabgkGi2kaa dwhaaeaacqGHciITcaWG0baaaiaaiIcacaWG4bGaaGilaiaadsfaca aISaGaamOzaiaaiMcacqGHsislcaWG5bWaaSbaaSqaaiaaigdaaeqa aOGaaGikaiaadIhacaaIPaGaaGzaVlaaiMcacqGHRaWkcaWGdbWaaS baaSqaaiabew7aLbqabaGccaaIOaGaamOzaiaaiYcacaWGMbGaaGyk aiaai6caaaa@5DB2@

Следующим стандартным шагом для получения необходимых условий оптимальности является вычисление вариации функционала J L 1 2n (f) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGkbWaaSbaaSqaaiaadYeadaqhaa qaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGikaiaadAgacaaI Paaaaa@386F@ . Определим её как

δ J L 1 2n = J L 1 2n (f+h) J L 1 2n (f), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWGkbWaaSbaaSqaaiaadY eadaqhaaqaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGypaiaa dQeadaWgaaWcbaGaamitamaaDaaabaGaaGymaaqaaiaaikdacaWGUb aaaaqabaGccaaIOaGaamOzaiabgUcaRiaadIgacaaIPaGaeyOeI0Ia amOsamaaBaaaleaacaWGmbWaa0baaeaacaaIXaaabaGaaGOmaiaad6 gaaaaabeaakiaaiIcacaWGMbGaaGykaiaaiYcaaaa@4961@

где h(x,t)Φ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGObGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHiiIZcqqHMoGraaa@39B9@ .

Получим выражение для вариации функционала:

δJL12n=(u(x,T,f+h)y0(x),u(x,T,f+h)y0(x))+

+(ut(x,T,f+h)y1(x),ut(x,T,f+h)y1(x))+Cε(f+h,f+h)

(u(x,T,f)y0(x),u(x,T,f)y0(x))(ut(x,T,f)y1(x),ut(x,T,f)y1(x))Cε(f,f)=

=(u(x,T,f+h)+u(x,T,f),u(x,T,f+h)u(x,T,f))+

+(ut(x,T,f+h)+ut(x,T,f),ut(x,T,f+h)ut(x,T,f))

2((u(x,T,f+h)u(x,T,f),y0(x))+(ut(x,T,f+h)ut(x,T,f),y1(x)))+

+Cε0l0T2f(x,t)h(x,t)+h2(x,t)dtdx.

Пусть теперь δu(x,t)=u(x,t,f+h)u(x,t,f). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWG1bGaaGikaiaadIhaca aISaGaamiDaiaaiMcacaaI9aGaamyDaiaaiIcacaWG4bGaaGilaiaa dshacaaISaGaamOzaiabgUcaRiaadIgacaaIPaGaeyOeI0IaamyDai aaiIcacaWG4bGaaGilaiaadshacaaISaGaamOzaiaaiMcacaaIUaaa aa@4A00@  Эта функция удовлетворяет исходному уравнению (1) с правой частью F(x,t)=h(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGgbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamiAaiaaiIcacaWG4bGaaGilaiaadshacaaI Paaaaa@3C5E@ , а именно

L 1 2n ( x ) 2 t 2 (δu)+ L 2 2n ( x ) t (δu)+ L 3 2n ( x )(δu)=h(x,t), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaaigdaaeaaca aIYaGaamOBaaaakiaaiIcadaWcaaqaaiabgkGi2cqaaiabgkGi2kaa dIhaaaGaaGykamaalaaabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaa GcbaGaeyOaIyRaamiDamaaCaaaleqabaGaaGOmaaaaaaGccaaIOaGa eqiTdqMaamyDaiaaiMcacqGHRaWkcaWGmbWaa0baaSqaaiaaikdaae aacaaIYaGaamOBaaaakiaaiIcadaWcaaqaaiabgkGi2cqaaiabgkGi 2kaadIhaaaGaaGykamaalaaabaGaeyOaIylabaGaeyOaIyRaamiDaa aacaaIOaGaeqiTdqMaamyDaiaaiMcacqGHRaWkcaWGmbWaa0baaSqa aiaaiodaaeaacaaIYaGaamOBaaaakiaaiIcadaWcaaqaaiabgkGi2c qaaiabgkGi2kaadIhaaaGaaGykaiaaiIcacqaH0oazcaWG1bGaaGyk aiaai2dacaWGObGaaGikaiaadIhacaaISaGaamiDaiaaiMcacaaISa aaaa@69AB@     (24)

краевым условиям (2) и нулевым начальным условиям

δu | t=0 =0, (δu) t | t=0 =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWG1bGaaGiFamaaBaaale aacaWG0bGaaGypaiaaicdaaeqaaOGaaGypaiaaicdacaaISaGaaGzb VpaalaaabaGaeyOaIyRaaGikaiabes7aKjaadwhacaaIPaaabaGaey OaIyRaamiDaaaacaaI8bWaaSbaaSqaaiaadshacaaI9aGaaGimaaqa baGccaaI9aGaaGimaiaai6caaaa@499F@     (25)

Тогда

δ J L 1 2n =(δu+2u(x,T,f),δu)+( (δu) t +2 u t (x,T,f), (δu) t ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWGkbWaaSbaaSqaaiaadY eadaqhaaqaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGypaiaa iIcacqaH0oazcaWG1bGaey4kaSIaaGOmaiaadwhacaaIOaGaamiEai aaiYcacaWGubGaaGilaiaadAgacaaIPaGaaGilaiabes7aKjaadwha caaIPaGaey4kaSIaaGikamaalaaabaGaeyOaIyRaaGikaiabes7aKj aadwhacaaIPaaabaGaeyOaIyRaamiDaaaacqGHRaWkcaaIYaWaaSaa aeaacqGHciITcaWG1baabaGaeyOaIyRaamiDaaaacaaIOaGaamiEai aaiYcacaWGubGaaGilaiaadAgacaaIPaGaaGilamaalaaabaGaeyOa IyRaaGikaiabes7aKjaadwhacaaIPaaabaGaeyOaIyRaamiDaaaaca aIPaGaeyOeI0caaa@67A9@

  2((δu, y 0 (x))+( (δu) t , y 1 (x)))+ C ε 0 l 0 T 2f(x,t)h(x,t)+ h 2 (x,t) dtdx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqGHsislcaaIYaGaaGikaiaaiIcacq aH0oazcaWG1bGaaGilaiaadMhadaWgaaWcbaGaaGimaaqabaGccaaI OaGaamiEaiaaiMcacaaIPaGaey4kaSIaaGikamaalaaabaGaeyOaIy RaaGikaiabes7aKjaadwhacaaIPaaabaGaeyOaIyRaamiDaaaacaaI SaGaamyEamaaBaaaleaacaaIXaaabeaakiaaiIcacaWG4bGaaGykai aaiMcacaaIPaGaey4kaSIaam4qamaaBaaaleaacqaH1oqzaeqaaOWa a8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOWaa8qCaeqale aacaaIWaaabaGaamivaaqdcqGHRiI8aOWaaeWaaeaacaaIYaGaamOz aiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaamiAaiaaiIcacaWG4b GaaGilaiaadshacaaIPaGaey4kaSIaamiAamaaCaaaleqabaGaaGOm aaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaaacaGLOaGaayzkaa GaamizaiaadshacaaMi8UaamizaiaadIhacaaISaaaaa@71CA@

  δ J L 1 2n =2((u(x,T,f) y 0 (x),δu)+( u t (x,T,f) y 1 (x), (δu) t )+ C ε (f,h))+ R h , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWGkbWaaSbaaSqaaiaadY eadaqhaaqaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGypaiaa ikdacaaIOaGaaGikaiaadwhacaaIOaGaamiEaiaaiYcacaWGubGaaG ilaiaadAgacaaIPaGaeyOeI0IaamyEamaaBaaaleaacaaIWaaabeaa kiaaiIcacaWG4bGaaGykaiaaiYcacqaH0oazcaWG1bGaaGykaiabgU caRiaaiIcadaWcaaqaaiabgkGi2kaadwhaaeaacqGHciITcaWG0baa aiaaiIcacaWG4bGaaGilaiaadsfacaaISaGaamOzaiaaiMcacqGHsi slcaWG5bWaaSbaaSqaaiaaigdaaeqaaOGaaGikaiaadIhacaaIPaGa aGilamaalaaabaGaeyOaIyRaaGikaiabes7aKjaadwhacaaIPaaaba GaeyOaIyRaamiDaaaacaaIPaGaey4kaSIaam4qamaaBaaaleaacqaH 1oqzaeqaaOGaaGikaiaadAgacaaISaGaamiAaiaaiMcacaaIPaGaey 4kaSIaamOuamaaBaaaleaacaWGObaabeaakiaaiYcaaaa@70B0@     (26)

где

R h =(δu,δu)+( (δu) t , (δu) t )+ C ε (h,h). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGsbWaaSbaaSqaaiaadIgaaeqaaO GaaGypaiaaiIcacqaH0oazcaWG1bGaaGilaiabes7aKjaadwhacaaI PaGaey4kaSIaaGikamaalaaabaGaeyOaIyRaaGikaiabes7aKjaadw hacaaIPaaabaGaeyOaIyRaamiDaaaacaaISaWaaSaaaeaacqGHciIT caaIOaGaeqiTdqMaamyDaiaaiMcaaeaacqGHciITcaWG0baaaiaaiM cacqGHRaWkcaWGdbWaaSbaaSqaaiabew7aLbqabaGccaaIOaGaamiA aiaaiYcacaWGObGaaGykaiaai6caaaa@56BA@     (27)

Далее определим сопряжённую функцию ψ(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHipqEcaaIOaGaamiEaiaaiYcaca WG0bGaaGykaaaa@379C@ , которая является решением краевой задачи для сопряжённого уравнения. Начальные условия для сопряжённой функции определяются условиями

ψ t | t=T =2(u(x,T,f) y 0 (x)),ψ | t=T =2( u t (x,T,f) y 1 (x)). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWcaaqaaiabgkGi2kabeI8a5bqaai abgkGi2kaadshaaaGaaGiFamaaBaaaleaacaWG0bGaaGypaiaadsfa aeqaaOGaaGypaiabgkHiTiaaikdacaaIOaGaamyDaiaaiIcacaWG4b GaaGilaiaadsfacaaISaGaamOzaiaaiMcacqGHsislcaWG5bWaaSba aSqaaiaaicdaaeqaaOGaaGikaiaadIhacaaIPaGaaGykaiaaiYcaca aMf8UaeqiYdKNaaGiFamaaBaaaleaacaWG0bGaaGypaiaadsfaaeqa aOGaaGypaiaaikdacaaIOaWaaSaaaeaacqGHciITcaWG1baabaGaey OaIyRaamiDaaaacaaIOaGaamiEaiaaiYcacaWGubGaaGilaiaadAga caaIPaGaeyOeI0IaamyEamaaBaaaleaacaaIXaaabeaakiaaiIcaca WG4bGaaGykaiaaiMcacaaIUaaaaa@65F9@     (28)

С учётом условий (28) выражение для вариации (26) можно записать как

  δ J L 1 2n =( ψ t (x,T),δu)+(ψ(x,T), (δu) t )+2 C ε (f,h)+ R h . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWGkbWaaSbaaSqaaiaadY eadaqhaaqaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGypaiab gkHiTiaaiIcadaWcaaqaaiabgkGi2kabeI8a5bqaaiabgkGi2kaads haaaGaaGikaiaadIhacaaISaGaamivaiaaiMcacaaISaGaeqiTdqMa amyDaiaaiMcacqGHRaWkcaaIOaGaeqiYdKNaaGikaiaadIhacaaISa GaamivaiaaiMcacaaISaWaaSaaaeaacqGHciITcaaIOaGaeqiTdqMa amyDaiaaiMcaaeaacqGHciITcaWG0baaaiaaiMcacqGHRaWkcaaIYa Gaam4qamaaBaaaleaacqaH1oqzaeqaaOGaaGikaiaadAgacaaISaGa amiAaiaaiMcacqGHRaWkcaWGsbWaaSbaaSqaaiaadIgaaeqaaOGaaG Olaaaa@6425@     (29)

Запишем дифференциальное уравнение для ψ(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHipqEcaaIOaGaamiEaiaaiYcaca WG0bGaaGykaaaa@379C@ . Из (29) временно отбросим величину R h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGsbWaaSbaaSqaaiaadIgaaeqaaa aa@33AD@ , тогда, изменив порядок дифференцирования под знаком интеграла и использовав симметричность оператора L 1 2n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaaigdaaeaaca aIYaGaamOBaaaaaaa@3525@ , получим

δ J L 1 2n = 0 l ( L 1 2n ( x ) ψ t (x,T)(δu)+ L 1 2n ( x )ψ(x,T) (δu) t +2 C ε 0 T f(x,t)h(x,t)dt)dx= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWGkbWaaSbaaSqaaiaadY eadaqhaaqaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGypamaa pehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaaiIcacqGHsi slcaWGmbWaa0baaSqaaiaaigdaaeaacaaIYaGaamOBaaaakiaaiIca daWcaaqaaiabgkGi2cqaaiabgkGi2kaadIhaaaGaaGykamaalaaaba GaeyOaIyRaeqiYdKhabaGaeyOaIyRaamiDaaaacaaIOaGaamiEaiaa iYcacaWGubGaaGykaiaaiIcacqaH0oazcaWG1bGaaGykaiabgUcaRi aadYeadaqhaaWcbaGaaGymaaqaaiaaikdacaWGUbaaaOGaaGikamaa laaabaGaeyOaIylabaGaeyOaIyRaamiEaaaacaaIPaGaeqiYdKNaaG ikaiaadIhacaaISaGaamivaiaaiMcadaWcaaqaaiabgkGi2kaaiIca cqaH0oazcaWG1bGaaGykaaqaaiabgkGi2kaadshaaaGaey4kaSIaaG OmaiaadoeadaWgaaWcbaGaeqyTdugabeaakmaapehabeWcbaGaaGim aaqaaiaadsfaa0Gaey4kIipakiaadAgacaaIOaGaamiEaiaaiYcaca WG0bGaaGykaiaadIgacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaa yIW7caWGKbGaamiDaiaaygW7caaIPaGaamizaiaadIhacaaI9aaaaa@865C@

= 0 l ( t ( L 1 2n ( x )ψ(x,t) )| t=T (δu)+ L 1 2n ( x )ψ(x,T) (δu) t +2 C ε 0 T f(x,t)h(x,t)dt)dx= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI9aWaa8qCaeqaleaacaaIWaaaba GaamiBaaqdcqGHRiI8aOGaaGikaiabgkHiTmaalaaabaGaeyOaIyla baGaeyOaIyRaamiDaaaacaaIOaGaamitamaaDaaaleaacaaIXaaaba GaaGOmaiaad6gaaaGccaaIOaWaaSaaaeaacqGHciITaeaacqGHciIT caWG4baaaiaaiMcacqaHipqEcaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaiaaygW7caaIPaGaaGiFamaaBaaaleaacaWG0bGaaGypaiaadsfa aeqaaOGaaGikaiabes7aKjaadwhacaaIPaGaey4kaSIaamitamaaDa aaleaacaaIXaaabaGaaGOmaiaad6gaaaGccaaIOaWaaSaaaeaacqGH ciITaeaacqGHciITcaWG4baaaiaaiMcacqaHipqEcaaIOaGaamiEai aaiYcacaWGubGaaGykamaalaaabaGaeyOaIyRaaGikaiabes7aKjaa dwhacaaIPaaabaGaeyOaIyRaamiDaaaacqGHRaWkcaaIYaGaam4qam aaBaaaleaacqaH1oqzaeqaaOWaa8qCaeqaleaacaaIWaaabaGaamiv aaqdcqGHRiI8aOGaamOzaiaaiIcacaWG4bGaaGilaiaadshacaaIPa GaamiAaiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGjcVlaadsga caWG0bGaaGykaiaadsgacaWG4bGaaGypaaaa@85AF@

= 0 l ( 0 T t ( t ( L 1 2n ( x )ψ(x,t))(δu)+ L 1 2n ( x )ψ(x,t) (δu) t )dt+2 C ε 0 T f(x,t)h(x,t)dt)dx= MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI9aWaa8qCaeqaleaacaaIWaaaba GaamiBaaqdcqGHRiI8aOGaaGikamaapehabeWcbaGaaGimaaqaaiaa dsfaa0Gaey4kIipakmaalaaabaGaeyOaIylabaGaeyOaIyRaamiDaa aacaaIOaGaeyOeI0YaaSaaaeaacqGHciITaeaacqGHciITcaWG0baa aiaaiIcacaWGmbWaa0baaSqaaiaaigdaaeaacaaIYaGaamOBaaaaki aaiIcadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadIhaaaGaaGykaiab eI8a5jaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGykaiaaiIcacq aH0oazcaWG1bGaaGykaiabgUcaRiaadYeadaqhaaWcbaGaaGymaaqa aiaaikdacaWGUbaaaOGaaGikamaalaaabaGaeyOaIylabaGaeyOaIy RaamiEaaaacaaIPaGaeqiYdKNaaGikaiaadIhacaaISaGaamiDaiaa iMcadaWcaaqaaiabgkGi2kaaiIcacqaH0oazcaWG1bGaaGykaaqaai abgkGi2kaadshaaaGaaGykaiaadsgacaWG0bGaey4kaSIaaGOmaiaa doeadaWgaaWcbaGaeqyTdugabeaakmaapehabeWcbaGaaGimaaqaai aadsfaa0Gaey4kIipakiaadAgacaaIOaGaamiEaiaaiYcacaWG0bGa aGykaiaadIgacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaayIW7ca WGKbGaamiDaiaaiMcacaWGKbGaamiEaiaai2daaaa@8B93@

= 0 l 0 T ( L 1 2n ( x ) 2 t 2 ψ(x,t)(δu)+ L 1 2n ( x )ψ(x,t) 2 t 2 (δu)+2 C ε f(x,t)h(x,t))dtdx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaI9aWaa8qCaeqaleaacaaIWaaaba GaamiBaaqdcqGHRiI8aOWaa8qCaeqaleaacaaIWaaabaGaamivaaqd cqGHRiI8aOGaaGikaiabgkHiTiaadYeadaqhaaWcbaGaaGymaaqaai aaikdacaWGUbaaaOGaaGikamaalaaabaGaeyOaIylabaGaeyOaIyRa amiEaaaacaaIPaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaa aakeaacqGHciITcaWG0bWaaWbaaSqabeaacaaIYaaaaaaakiabeI8a 5jaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGikaiabes7aKjaadw hacaaIPaGaey4kaSIaamitamaaDaaaleaacaaIXaaabaGaaGOmaiaa d6gaaaGccaaIOaWaaSaaaeaacqGHciITaeaacqGHciITcaWG4baaai aaiMcacqaHipqEcaaIOaGaamiEaiaaiYcacaWG0bGaaGykamaalaaa baGaeyOaIy7aaWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamiDam aaCaaaleqabaGaaGOmaaaaaaGccaaIOaGaeqiTdqMaamyDaiaaiMca cqGHRaWkcaaIYaGaam4qamaaBaaaleaacqaH1oqzaeqaaOGaamOzai aaiIcacaWG4bGaaGilaiaadshacaaIPaGaamiAaiaaiIcacaWG4bGa aGilaiaadshacaaIPaGaaGykaiaadsgacaWG0bGaaGjcVlaadsgaca WG4bGaaGOlaaaa@82C8@

Учитывая симметричность оператора L12n/x (см. (13)), преобразуем последний интеграл:

δ J L 1 2n = 0 l 0 T ( L 1 2n ( x ) 2 t 2 ψ(x,t)(δu)+ψ(x,t) L 1 2n ( x ) 2 t 2 (δu)+2 C ε f(x,t)h(x,t))dtdx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWGkbWaaSbaaSqaaiaadY eadaqhaaqaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGypamaa pehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakmaapehabeWcba GaaGimaaqaaiaadsfaa0Gaey4kIipakiaaiIcacqGHsislcaWGmbWa a0baaSqaaiaaigdaaeaacaaIYaGaamOBaaaakiaaiIcadaWcaaqaai abgkGi2cqaaiabgkGi2kaadIhaaaGaaGykamaalaaabaGaeyOaIy7a aWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamiDamaaCaaaleqaba GaaGOmaaaaaaGccqaHipqEcaaIOaGaamiEaiaaiYcacaWG0bGaaGyk aiaaiIcacqaH0oazcaWG1bGaaGykaiabgUcaRiabeI8a5jaaiIcaca WG4bGaaGilaiaadshacaaIPaGaeyyXICTaamitamaaDaaaleaacaaI XaaabaGaaGOmaiaad6gaaaGccaaIOaWaaSaaaeaacqGHciITaeaacq GHciITcaWG4baaaiaaiMcadaWcaaqaaiabgkGi2oaaCaaaleqabaGa aGOmaaaaaOqaaiabgkGi2kaadshadaahaaWcbeqaaiaaikdaaaaaaO GaaGikaiabes7aKjaadwhacaaIPaGaey4kaSIaaGOmaiaadoeadaWg aaWcbaGaeqyTdugabeaakiaadAgacaaIOaGaamiEaiaaiYcacaWG0b GaaGykaiaadIgacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaaiMca caWGKbGaamiDaiaayIW7caWGKbGaamiEaiaaiYcaaaa@8B17@

выражая из (24) слагаемое L12n(/x)(2(δu)/t2), получаем

δ J L 1 2n = 0 l 0 T ( L 1 2n ( x ) 2 t 2 ψ(x,t)δu+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWGkbWaaSbaaSqaaiaadY eadaqhaaqaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGypamaa pehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakmaapehabeWcba GaaGimaaqaaiaadsfaa0Gaey4kIipakiaaiIcacqGHsislcaWGmbWa a0baaSqaaiaaigdaaeaacaaIYaGaamOBaaaakiaaiIcadaWcaaqaai abgkGi2cqaaiabgkGi2kaadIhaaaGaaGykamaalaaabaGaeyOaIy7a aWbaaSqabeaacaaIYaaaaaGcbaGaeyOaIyRaamiDamaaCaaaleqaba GaaGOmaaaaaaGccqaHipqEcaaIOaGaamiEaiaaiYcacaWG0bGaaGyk aiabgwSixlabes7aKjaadwhacqGHRaWkaaa@5C65@

+ψ(x,t)(h(x,t) L 2 2n ( x ) (δu) t L 3 2n ( x )(δu))+2 C ε f(x,t)h(x,t))dtdx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqGHRaWkcqaHipqEcaaIOaGaamiEai aaiYcacaWG0bGaaGykaiaaiIcacaWGObGaaGikaiaadIhacaaISaGa amiDaiaaiMcacqGHsislcaWGmbWaa0baaSqaaiaaikdaaeaacaaIYa GaamOBaaaakiaaiIcadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadIha aaGaaGykamaalaaabaGaeyOaIyRaaGikaiabes7aKjaadwhacaaIPa aabaGaeyOaIyRaamiDaaaacqGHsislcaWGmbWaa0baaSqaaiaaioda aeaacaaIYaGaamOBaaaakiaaiIcadaWcaaqaaiabgkGi2cqaaiabgk Gi2kaadIhaaaGaaGykaiaaiIcacqaH0oazcaWG1bGaaGykaiaaygW7 caaIPaGaey4kaSIaaGOmaiaadoeadaWgaaWcbaGaeqyTdugabeaaki aadAgacaaIOaGaamiEaiaaiYcacaWG0bGaaGykaiaadIgacaaIOaGa amiEaiaaiYcacaWG0bGaaGykaiaaygW7caaIPaGaaGjcVlaadsgaca WG0bGaaGjcVlaadsgacaWG4bGaaGOlaaaa@77A1@

Здесь после раскрытия скобок и группировки слагаемых с сомножителем h(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGObGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36BB@  окончательно будем иметь

δ J L 1 2n = 0 l 0 T ( L 1 2n ( x ) 2 ψ t 2 (δu)ψ L 2 2n ( x ) (δu) t ψ L 3 2n ( x )(δu)+(ψ+2 C ε f)h)dtdx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWGkbWaaSbaaSqaaiaadY eadaqhaaqaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGypamaa pehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakmaapehabeWcba GaaGimaaqaaiaadsfaa0Gaey4kIipakiaaiIcacqGHsislcaWGmbWa a0baaSqaaiaaigdaaeaacaaIYaGaamOBaaaakiaaiIcadaWcaaqaai abgkGi2cqaaiabgkGi2kaadIhaaaGaaGykamaalaaabaGaeyOaIy7a aWbaaSqabeaacaaIYaaaaOGaeqiYdKhabaGaeyOaIyRaamiDamaaCa aaleqabaGaaGOmaaaaaaGccaaIOaGaeqiTdqMaamyDaiaaiMcacqGH sislcqaHipqEcaWGmbWaa0baaSqaaiaaikdaaeaacaaIYaGaamOBaa aakiaaiIcadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadIhaaaGaaGyk amaalaaabaGaeyOaIyRaaGikaiabes7aKjaadwhacaaIPaaabaGaey OaIyRaamiDaaaacqGHsislcqaHipqEcaWGmbWaa0baaSqaaiaaioda aeaacaaIYaGaamOBaaaakiaaiIcadaWcaaqaaiabgkGi2cqaaiabgk Gi2kaadIhaaaGaaGykaiaaiIcacqaH0oazcaWG1bGaaGykaiabgUca RiaaiIcacqaHipqEcqGHRaWkcaaIYaGaam4qamaaBaaaleaacqaH1o qzaeqaaOGaamOzaiaaiMcacaWGObGaaGykaiaadsgacaWG0bGaaGjc VlaadsgacaWG4bGaaGOlaaaa@8A37@     (30)

В формуле (30) для краткости не указываем аргументы (x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamiEaiaaiYcacaWG0bGaaG ykaaaa@35CE@ .

Определим далее сопряжённое уравнение

δu( L 1 2n ( x ) 2 ψ t 2 + L 3 2n ( x )ψ)+ψ L 2 2n ( x ) (δu) t =0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWG1bGaaGikaiaadYeada qhaaWcbaGaaGymaaqaaiaaikdacaWGUbaaaOGaaGikamaalaaabaGa eyOaIylabaGaeyOaIyRaamiEaaaacaaIPaWaaSaaaeaacqGHciITda ahaaWcbeqaaiaaikdaaaGccqaHipqEaeaacqGHciITcaWG0bWaaWba aSqabeaacaaIYaaaaaaakiabgUcaRiaadYeadaqhaaWcbaGaaG4maa qaaiaaikdacaWGUbaaaOGaaGikamaalaaabaGaeyOaIylabaGaeyOa IyRaamiEaaaacaaIPaGaeqiYdKNaaGykaiabgUcaRiabeI8a5jaadY eadaqhaaWcbaGaaGOmaaqaaiaaikdacaWGUbaaaOGaaGikamaalaaa baGaeyOaIylabaGaeyOaIyRaamiEaaaacaaIPaWaaSaaaeaacqGHci ITcaaIOaGaeqiTdqMaamyDaiaaiMcaaeaacqGHciITcaWG0baaaiaa i2dacaaIWaGaaGOlaaaa@66CF@      (31)

Тогда из (30) с учётом (31) получаем окончательное выражение для вариации:

δ J L 1 2n = 0 l 0 T ψ(x,t)+2 C ε f(x,t) h(x,t)dtdx+ R h . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWGkbWaaSbaaSqaaiaadY eadaqhaaqaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGypamaa pehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakmaapehabeWcba GaaGimaaqaaiaadsfaa0Gaey4kIipakmaabmaabaGaeqiYdKNaaGik aiaadIhacaaISaGaamiDaiaaiMcacqGHRaWkcaaIYaGaam4qamaaBa aaleaacqaH1oqzaeqaaOGaamOzaiaaiIcacaWG4bGaaGilaiaadsha caaIPaaacaGLOaGaayzkaaGaamiAaiaaiIcacaWG4bGaaGilaiaads hacaaIPaGaaGjcVlaadsgacaWG0bGaaGjcVlaadsgacaWG4bGaey4k aSIaamOuamaaBaaaleaacaWGObaabeaakiaai6caaaa@60D4@     (32)

Формула (32) даёт представление приращения функционала (23), которое линейно относительно приращения управления h(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGObGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36BB@ . Если докажем, что R h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGsbWaaSbaaSqaaiaadIgaaeqaaa aa@33AD@  имеет более высокий порядок малости относительно приращения h(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGObGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36BB@ , то формула (32) даст явное выражение градиента функционала, что позволит использовать его для построения градиентных методов минимизации. Далее сформулируем вспомогательное утверждение.

Теорема 2 [энергетическое тождество]. Пусть L12n/x, L32n/x  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  дифференциальные операторы, которые имеют вид

  L 1 2n x = k=0 n (1) k p 1,2k 2 2k x 2k , L 3 2n ( x )= k=0 n (1) k p 3,2k 2 2k x 2k , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGmbWaa0baaSqaaiaaigdaaeaaca aIYaGaamOBaaaakmaabmaabaWaaSaaaeaacqGHciITaeaacqGHciIT caWG4baaaaGaayjkaiaawMcaaiaai2dadaaeWbqabSqaaiaadUgaca aI9aGaaGimaaqaaiaad6gaa0GaeyyeIuoakiaaiIcacqGHsislcaaI XaGaaGykamaaCaaaleqabaGaam4AaaaakiaadchadaqhaaWcbaGaaG ymaiaaiYcacaaIYaGaam4AaaqaaiaaikdaaaGcdaWcaaqaaiabgkGi 2oaaCaaaleqabaGaaGOmaiaadUgaaaaakeaacqGHciITcaWG4bWaaW baaSqabeaacaaIYaGaam4AaaaaaaGccaaISaGaaGzbVlaadYeadaqh aaWcbaGaaG4maaqaaiaaikdacaWGUbaaaOGaaGikamaalaaabaGaey OaIylabaGaeyOaIyRaamiEaaaacaaIPaGaaGypamaaqahabeWcbaGa am4Aaiaai2dacaaIWaaabaGaamOBaaqdcqGHris5aOGaaGikaiabgk HiTiaaigdacaaIPaWaaWbaaSqabeaacaWGRbaaaOGaamiCamaaDaaa leaacaaIZaGaaGilaiaaikdacaWGRbaabaGaaGOmaaaakmaalaaaba GaeyOaIy7aaWbaaSqabeaacaaIYaGaam4AaaaaaOqaaiabgkGi2kaa dIhadaahaaWcbeqaaiaaikdacaWGRbaaaaaakiaaiYcaaaa@74DF@

а оператор L22n/x  MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  оператор общего вида. Определим величину

E(τ)= 1 2 [ 0 l k=0 n ( p 1,2k 2 ( k+1 u x k t ) 2 + p 3,2k 2 ( k u x k ) 2 )dx ]| t=τ , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGfbGaaGikaiabes8a0jaaiMcaca aI9aWaaSaaaeaacaaIXaaabaGaaGOmaaaacaaIBbGaaGjcVpaapeha beWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakmaaqahabeWcbaGaam 4Aaiaai2dacaaIWaaabaGaamOBaaqdcqGHris5aOGaaGikaiaadcha daqhaaWcbaGaaGymaiaaiYcacaaIYaGaam4AaaqaaiaaikdaaaGcca aIOaWaaSaaaeaacqGHciITdaahaaWcbeqaaiaadUgacqGHRaWkcaaI XaaaaOGaamyDaaqaaiabgkGi2kaadIhadaahaaWcbeqaaiaadUgaaa GccqGHciITcaWG0baaaiaaiMcadaahaaWcbeqaaiaaygW7caaIYaaa aOGaey4kaSIaamiCamaaDaaaleaacaaIZaGaaGilaiaaikdacaWGRb aabaGaaGOmaaaakiaaiIcadaWcaaqaaiabgkGi2oaaCaaaleqabaGa am4AaaaakiaadwhaaeaacqGHciITcaWG4bWaaWbaaSqabeaacaWGRb aaaaaakiaaiMcadaahaaWcbeqaaiaaygW7caaIYaaaaOGaaGykaiaa dsgacaWG4bGaaGyxaiaaiYhadaWgaaWcbaGaamiDaiaai2dacqaHep aDaeqaaOGaaGilaaaa@72DE@     (33)

где u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  решение уравнения (1), удовлетворяющее краевым условиям (2) и начальным условиям (3). Тогда для любого τ>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHepaDcaaI+aGaaGimaaaa@3504@  имеет место тождество

  E(τ)E(0)+ 0 l 0 τ ( L 2 2n ( x ) u t ) u t dtdx= 0 l 0 τ F(x,t) u t dtdx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGfbGaaGikaiabes8a0jaaiMcacq GHsislcaWGfbGaaGikaiaaicdacaaIPaGaey4kaSYaa8qCaeqaleaa caaIWaaabaGaamiBaaqdcqGHRiI8aOWaa8qCaeqaleaacaaIWaaaba GaeqiXdqhaniabgUIiYdGccaaIOaGaamitamaaDaaaleaacaaIYaaa baGaaGOmaiaad6gaaaGccaaIOaWaaSaaaeaacqGHciITaeaacqGHci ITcaWG4baaaiaaiMcadaWcaaqaaiabgkGi2kaadwhaaeaacqGHciIT caWG0baaaiaaiMcadaWcaaqaaiabgkGi2kaadwhaaeaacqGHciITca WG0baaaiaayIW7caWGKbGaamiDaiaayIW7caWGKbGaamiEaiaai2da daWdXbqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGcdaWdXbqabS qaaiaaicdaaeaacqaHepaDa0Gaey4kIipakiaadAeacaaIOaGaamiE aiaaiYcacaWG0bGaaGykamaalaaabaGaeyOaIyRaamyDaaqaaiabgk Gi2kaadshaaaGaaGjcVlaadsgacaWG0bGaaGjcVlaadsgacaWG4bGa aGOlaaaa@793F@     (34)

Доказательство. Умножим уравнение (1) на /x и проинтегрируем по области Ω(τ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqqHPoWvcaaIOaGaeqiXdqNaaGykaa aa@3675@ , а после использования леммы немедленно получим утверждение теоремы.

Установленную теорему можно применять для доказательства единственности решения краевых задач.

Следствие [единственность решения]. Пусть существует решение u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@  начально-краевой задачи (1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ (3) и выполняется равенство

0 l 0 τ ( L 2 2n ( x ) u t ) u t dtdx=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWdXbqabSqaaiaaicdaaeaacaWGSb aaniabgUIiYdGcdaWdXbqabSqaaiaaicdaaeaacqaHepaDa0Gaey4k IipakiaaiIcacaWGmbWaa0baaSqaaiaaikdaaeaacaaIYaGaamOBaa aakiaaiIcadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadIhaaaGaaGyk amaalaaabaGaeyOaIyRaamyDaaqaaiabgkGi2kaadshaaaGaaGykam aalaaabaGaeyOaIyRaamyDaaqaaiabgkGi2kaadshaaaGaaGjcVlaa dsgacaWG0bGaaGjcVlaadsgacaWG4bGaaGypaiaaicdacaaIUaaaaa@57A6@

Тогда это решение единственно.

Доказательство. Пусть u(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C8@ , w(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG3bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36CA@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  различные (несовпадающие) решения начально-краевой задачи. Рассмотрим функцию v(x,t)=u(x,t)w(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaamyDaiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaeyOeI0Iaam4DaiaaiIcacaWG4bGaaGilaiaadshacaaIPaaaaa@4295@ . Она является решением задачи (1), (2) при F(x,t)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGgbGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaaGimaaaa@381A@  и при нулевых начальных условиях (3). По теореме для функции v(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcaaaa@36C9@  имеем E(τ)E(0)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGfbGaaGikaiabes8a0jaaiMcacq GHsislcaWGfbGaaGikaiaaicdacaaIPaGaaGypaiaaicdaaaa@3B08@  и E(τ)=0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGfbGaaGikaiabes8a0jaaiMcaca aI9aGaaGimaiaai6caaaa@37EA@  Тогда в силу (34) получаем v(x,t)0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG2bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacqGHHjIUcaaIWaaaaa@394C@ , откуда u(x,t)=w(x,t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG1bGaaGikaiaadIhacaaISaGaam iDaiaaiMcacaaI9aGaam4DaiaaiIcacaWG4bGaaGilaiaadshacaaI PaGaaGOlaaaa@3D54@  

Теорема 3 [оценка остатка R h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGsbWaaSbaaSqaaiaadIgaaeqaaa aa@33AD@ ]. Пусть

  ( L 2 2n ( x ) δu t , δu t )0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaamitamaaDaaaleaacaaIYa aabaGaaGOmaiaad6gaaaGccaaIOaWaaSaaaeaacqGHciITaeaacqGH ciITcaWG4baaaiaaiMcadaWcaaqaaiabgkGi2kabes7aKjaadwhaae aacqGHciITcaWG0baaaiaaiYcadaWcaaqaaiabgkGi2kabes7aKjaa dwhaaeaacqGHciITcaWG0baaaiaaiMcacqGHLjYScaaIWaaaaa@4BF1@

и выполнены условия теоремы 2. Тогда для величины R h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGsbWaaSbaaSqaaiaadIgaaeqaaa aa@33AD@  из (27) имеет место оценка

R h =O( 0 l 0 T h 2 (x,t)dtdx). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGsbWaaSbaaSqaaiaadIgaaeqaaO GaaGypaiaad+eacaaIOaGaaGjcVpaapehabeWcbaGaaGimaaqaaiaa dYgaa0Gaey4kIipakmaapehabeWcbaGaaGimaaqaaiaadsfaa0Gaey 4kIipakiaadIgadaahaaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaa iYcacaWG0bGaaGykaiaayIW7caWGKbGaamiDaiaadsgacaWG4bGaaG ykaiaai6caaaa@4C70@

Доказательство. Рассмотрим первое и второе слагаемые в (27). Раскрыв скалярное произведение, с учётом леммы будем иметь

[ (δu) t , (δu) t ]= 0 l 0 T ( L 1 2n ( x ) (δu) t ) (δu) t dtdx. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIBbWaaSaaaeaacqGHciITcaaIOa GaeqiTdqMaamyDaiaaiMcaaeaacqGHciITcaWG0baaaiaaiYcadaWc aaqaaiabgkGi2kaaiIcacqaH0oazcaWG1bGaaGykaaqaaiabgkGi2k aadshaaaGaaGyxaiaai2dadaWdXbqabSqaaiaaicdaaeaacaWGSbaa niabgUIiYdGcdaWdXbqabSqaaiaaicdaaeaacaWGubaaniabgUIiYd GccaaIOaGaamitamaaDaaaleaacaaIXaaabaGaaGOmaiaad6gaaaGc caaIOaWaaSaaaeaacqGHciITaeaacqGHciITcaWG4baaaiaaiMcada WcaaqaaiabgkGi2kaaiIcacqaH0oazcaWG1bGaaGykaaqaaiabgkGi 2kaadshaaaGaaGykamaalaaabaGaeyOaIyRaaGikaiabes7aKjaadw hacaaIPaaabaGaeyOaIyRaamiDaaaacaaMi8UaamizaiaadshacaaM i8UaamizaiaadIhacaaIUaaaaa@6E47@

Следующим шагом уравнение (24) скалярно умножим на δu/x:

[ 2 (δu) t 2 , (δu) t ]+( L 2 2n ( x ) (δu) t , (δu) t )+( L 3 2n ( x )(δu), (δu) t )=(h(x,t), (δu) t ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIBbWaaSaaaeaacqGHciITdaahaa WcbeqaaiaaikdaaaGccaaIOaGaeqiTdqMaamyDaiaaiMcaaeaacqGH ciITcaWG0bWaaWbaaSqabeaacaaIYaaaaaaakiaaiYcadaWcaaqaai abgkGi2kaaiIcacqaH0oazcaWG1bGaaGykaaqaaiabgkGi2kaadsha aaGaaGyxaiabgUcaRiaaiIcacaWGmbWaa0baaSqaaiaaikdaaeaaca aIYaGaamOBaaaakiaaiIcadaWcaaqaaiabgkGi2cqaaiabgkGi2kaa dIhaaaGaaGykamaalaaabaGaeyOaIyRaaGikaiabes7aKjaadwhaca aIPaaabaGaeyOaIyRaamiDaaaacaaISaWaaSaaaeaacqGHciITcaaI OaGaeqiTdqMaamyDaiaaiMcaaeaacqGHciITcaWG0baaaiaaiMcacq GHRaWkcaaIOaGaamitamaaDaaaleaacaaIZaaabaGaaGOmaiaad6ga aaGccaaIOaWaaSaaaeaacqGHciITaeaacqGHciITcaWG4baaaiaaiM cacaaIOaGaeqiTdqMaamyDaiaaiMcacaaISaWaaSaaaeaacqGHciIT caaIOaGaeqiTdqMaamyDaiaaiMcaaeaacqGHciITcaWG0baaaiaaiM cacaaI9aGaaGikaiaadIgacaaIOaGaamiEaiaaiYcacaWG0bGaaGyk aiaaiYcadaWcaaqaaiabgkGi2kaaiIcacqaH0oazcaWG1bGaaGykaa qaaiabgkGi2kaadshaaaGaaGykaiaai6caaaa@8934@

Применив теорему 2 для функции δu MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWG1baaaa@345C@ , будем иметь E(0)=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGfbGaaGikaiaaicdacaaIPaGaaG ypaiaaicdaaaa@3627@ , и тогда из (34) получим

E(τ)+( L 2 2n ( x ) (δu) t , (δu) t )= 0 τ 0 l h(x,t) (δu) t dxdt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGfbGaaGikaiabes8a0jaaiMcacq GHRaWkcaaIOaGaamitamaaDaaaleaacaaIYaaabaGaaGOmaiaad6ga aaGccaaIOaWaaSaaaeaacqGHciITaeaacqGHciITcaWG4baaaiaaiM cadaWcaaqaaiabgkGi2kaaiIcacqaH0oazcaWG1bGaaGykaaqaaiab gkGi2kaadshaaaGaaGilamaalaaabaGaeyOaIyRaaGikaiabes7aKj aadwhacaaIPaaabaGaeyOaIyRaamiDaaaacaaIPaGaaGypamaapeha beWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qCaeqaleaaca aIWaaabaGaamiBaaqdcqGHRiI8aOGaamiAaiaaiIcacaWG4bGaaGil aiaadshacaaIPaWaaSaaaeaacqGHciITcaaIOaGaeqiTdqMaamyDai aaiMcaaeaacqGHciITcaWG0baaaiaayIW7caWGKbGaamiEaiaayIW7 caWGKbGaamiDaiaai6caaaa@6F63@     (35)

С помощью (33) оценим левую часть (35):

E(τ)+( L 2 2n ( x ) (δu) t , (δu) t )[ 0 l k=0 n p 1,2k 2 2 ( k (δu) x k ) 2 dx ]| t=τ = 1 2 ( (δu) t , (δu) t ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWGfbGaaGikaiabes8a0jaaiMcacq GHRaWkcaaIOaGaamitamaaDaaaleaacaaIYaaabaGaaGOmaiaad6ga aaGccaaIOaWaaSaaaeaacqGHciITaeaacqGHciITcaWG4baaaiaaiM cadaWcaaqaaiabgkGi2kaaiIcacqaH0oazcaWG1bGaaGykaaqaaiab gkGi2kaadshaaaGaaGilamaalaaabaGaeyOaIyRaaGikaiabes7aKj aadwhacaaIPaaabaGaeyOaIyRaamiDaaaacaaIPaGaeyyzImRaaG4w aiaayIW7daWdXbqabSqaaiaaicdaaeaacaWGSbaaniabgUIiYdGcda aeWbqabSqaaiaadUgacaaI9aGaaGimaaqaaiaad6gaa0GaeyyeIuoa kmaalaaabaGaamiCamaaDaaaleaacaaIXaGaaGilaiaaikdacaWGRb aabaGaaGOmaaaaaOqaaiaaikdaaaGaaGikamaalaaabaGaeyOaIy7a aWbaaSqabeaacaWGRbaaaOGaaGikaiabes7aKjaadwhacaaIPaaaba GaeyOaIyRaamiEamaaCaaaleqabaGaam4AaaaaaaGccaaIPaWaaWba aSqabeaacaaMb8UaaGOmaaaakiaadsgacaWG4bGaaGyxaiaaiYhada WgaaWcbaGaamiDaiaai2dacqaHepaDaeqaaOGaaGypamaalaaabaGa aGymaaqaaiaaikdaaaGaaGikamaalaaabaGaeyOaIyRaaGikaiabes 7aKjaadwhacaaIPaaabaGaeyOaIyRaamiDaaaacaaISaWaaSaaaeaa cqGHciITcaaIOaGaeqiTdqMaamyDaiaaiMcaaeaacqGHciITcaWG0b aaaiaaiMcacaaIUaaaaa@8F5C@

Теперь возьмём ε>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH1oqzcaaI+aGaaGimaaaa@34E6@ и оценим в (35) правую часть, используя лемму 2:

  1 2 ( (δu) t , (δu) t ) 0 τ 0 l h(x,t) (δu) t dxdt 1 2ε 0 τ 0 l h 2 (x,t)dxdt+ ε 2 0 τ 0 l ( (δu) t ) 2 dxdt MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaai aaiIcadaWcaaqaaiabgkGi2kaaiIcacqaH0oazcaWG1bGaaGykaaqa aiabgkGi2kaadshaaaGaaGilamaalaaabaGaeyOaIyRaaGikaiabes 7aKjaadwhacaaIPaaabaGaeyOaIyRaamiDaaaacaaIPaGaeyizIm6a a8qCaeqaleaacaaIWaaabaGaeqiXdqhaniabgUIiYdGcdaWdXbqabS qaaiaaicdaaeaacaWGSbaaniabgUIiYdGccaWGObGaaGikaiaadIha caaISaGaamiDaiaaiMcadaWcaaqaaiabgkGi2kaaiIcacqaH0oazca WG1bGaaGykaaqaaiabgkGi2kaadshaaaGaaGjcVlaadsgacaWG4bGa aGjcVlaadsgacaWG0bGaeyizIm6aaSaaaeaacaaIXaaabaGaaGOmai abew7aLbaadaWdXbqabSqaaiaaicdaaeaacqaHepaDa0Gaey4kIipa kmaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaadIgada ahaaWcbeqaaiaaikdaaaGccaaIOaGaamiEaiaaiYcacaWG0bGaaGyk aiaayIW7caWGKbGaamiEaiaayIW7caWGKbGaamiDaiabgUcaRmaala aabaGaeqyTdugabaGaaGOmaaaadaWdXbqabSqaaiaaicdaaeaacqaH epaDa0Gaey4kIipakmaapehabeWcbaGaaGimaaqaaiaadYgaa0Gaey 4kIipakiaaiIcadaWcaaqaaiabgkGi2kaaiIcacqaH0oazcaWG1bGa aGykaaqaaiabgkGi2kaadshaaaGaaGykamaaCaaaleqabaGaaGzaVl aaikdaaaGccaWGKbGaamiEaiaayIW7caWGKbGaamiDaiabgsMiJcaa @9D99@

1 2ε 0 τ 0 l h 2 (x,t)dxdt+ ε σ l 2 0 τ ( (δu) t , (δu) t )dt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqGHKjYOdaWcaaqaaiaaigdaaeaaca aIYaGaeqyTdugaamaapehabeWcbaGaaGimaaqaaiabes8a0bqdcqGH RiI8aOWaa8qCaeqaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaam iAamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG4bGaaGilaiaadsha caaIPaGaaGjcVlaadsgacaWG4bGaaGjcVlaadsgacaWG0bGaey4kaS YaaSaaaeaacqaH1oqzcqaHdpWCdaWgaaWcbaGaamiBaaqabaaakeaa caaIYaaaamaapehabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aO GaaGikamaalaaabaGaeyOaIyRaaGikaiabes7aKjaadwhacaaIPaaa baGaeyOaIyRaamiDaaaacaaISaWaaSaaaeaacqGHciITcaaIOaGaeq iTdqMaamyDaiaaiMcaaeaacqGHciITcaWG0baaaiaaiMcacaWGKbGa amiDaiaai6caaaa@6C26@

Далее, умножив на 2 и положив ε=1 σ l MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH1oqzcaaI9aGaaGymaiabeo8aZn aaBaaaleaacaWGSbaabeaaaaa@37C6@ , получим неравенство

  ( (δu) t , (δu) t ) σ l 0 τ 0 l h 2 (x,t)dxdt+ 0 τ ( (δu) t , (δu) t )dt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaWaaSaaaeaacqGHciITcaaIOa GaeqiTdqMaamyDaiaaiMcaaeaacqGHciITcaWG0baaaiaaiYcadaWc aaqaaiabgkGi2kaaiIcacqaH0oazcaWG1bGaaGykaaqaaiabgkGi2k aadshaaaGaaGykaiabgsMiJkabeo8aZnaaBaaaleaacaWGSbaabeaa kmaapehabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOWaa8qCae qaleaacaaIWaaabaGaamiBaaqdcqGHRiI8aOGaamiAamaaCaaaleqa baGaaGOmaaaakiaaiIcacaWG4bGaaGilaiaadshacaaIPaGaaGjcVl aadsgacaWG4bGaaGjcVlaadsgacaWG0bGaey4kaSYaa8qCaeqaleaa caaIWaaabaGaeqiXdqhaniabgUIiYdGccaaIOaWaaSaaaeaacqGHci ITcaaIOaGaeqiTdqMaamyDaiaaiMcaaeaacqGHciITcaWG0baaaiaa iYcadaWcaaqaaiabgkGi2kaaiIcacqaH0oazcaWG1bGaaGykaaqaai abgkGi2kaadshaaaGaaGykaiaadsgacaWG0bGaaGilaaaa@7850@

к которому применим неравенство Гронуолла:

( (δu) t , (δu) t ) e T σ l 0 T 0 l h 2 (x,t)dxdt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaWaaSaaaeaacqGHciITcaaIOa GaeqiTdqMaamyDaiaaiMcaaeaacqGHciITcaWG0baaaiaaiYcadaWc aaqaaiabgkGi2kaaiIcacqaH0oazcaWG1bGaaGykaaqaaiabgkGi2k aadshaaaGaaGykaiabgsMiJkaadwgadaahaaWcbeqaaiaadsfaaaGc cqaHdpWCdaWgaaWcbaGaamiBaaqabaGcdaWdXbqabSqaaiaaicdaae aacaWGubaaniabgUIiYdGcdaWdXbqabSqaaiaaicdaaeaacaWGSbaa niabgUIiYdGccaWGObWaaWbaaSqabeaacaaIYaaaaOGaaGikaiaadI hacaaISaGaamiDaiaaiMcacaaMi8UaamizaiaadIhacaaMi8Uaamiz aiaadshacaaIUaaaaa@5FDC@      (36)

Выполним заключительную выкладку и будем иметь

(δu,δu)= 0 T 0 l k=0 n p 1,2k 2 ( k (δu) x k ) 2 dxdt. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaeqiTdqMaamyDaiaaiYcacq aH0oazcaWG1bGaaGykaiaai2dadaWdXbqabSqaaiaaicdaaeaacaWG ubaaniabgUIiYdGcdaWdXbqabSqaaiaaicdaaeaacaWGSbaaniabgU IiYdGccaaMi8+aaabCaeqaleaacaWGRbGaaGypaiaaicdaaeaacaWG UbaaniabggHiLdGccaWGWbWaa0baaSqaaiaaigdacaaISaGaaGOmai aadUgaaeaacaaIYaaaaOGaaGikamaalaaabaGaeyOaIy7aaWbaaSqa beaacaWGRbaaaOGaaGikaiabes7aKjaadwhacaaIPaaabaGaeyOaIy RaamiEamaaCaaaleqabaGaam4AaaaaaaGccaaIPaWaaWbaaSqabeaa caaMb8UaaGOmaaaakiaadsgacaWG4bGaaGjcVlaadsgacaWG0bGaaG Olaaaa@6268@

Для kδu/xk2 воспользуемся оценкой (19), но только через производную по t MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaWG0baaaa@32B6@ :

( k (δu) x k ) 2 C k 0 τ ( t k (δu) x k ) 2 dt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaWaaSaaaeaacqGHciITdaahaa WcbeqaaiaadUgaaaGccaaIOaGaeqiTdqMaamyDaiaaiMcaaeaacqGH ciITcaWG4bWaaWbaaSqabeaacaWGRbaaaaaakiaaiMcadaahaaWcbe qaaiaaygW7caaIYaaaaOGaeyizImQaam4qamaaBaaaleaacaWGRbaa beaakmaapehabeWcbaGaaGimaaqaaiabes8a0bqdcqGHRiI8aOGaaG ikamaalaaabaGaeyOaIylabaGaeyOaIyRaamiDaaaadaWcaaqaaiab gkGi2oaaCaaaleqabaGaam4AaaaakiaaiIcacqaH0oazcaWG1bGaaG ykaaqaaiabgkGi2kaadIhadaahaaWcbeqaaiaadUgaaaaaaOGaaGyk amaaCaaaleqabaGaaGzaVlaaikdaaaGccaWGKbGaamiDaiaaiYcaaa a@5CDA@

и получим неравенство

(δu,δu)T max k C k 0 T 0 l k=0 n p 1,2k 2 ( t k (δu) x k ) 2 dxdtθ 0 T 0 l h 2 (x,t)dxdt, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacaaIOaGaeqiTdqMaamyDaiaaiYcacq aH0oazcaWG1bGaaGykaiabgsMiJkaadsfadaGfqbqabSqaaiaadUga aeqakeaaciGGTbGaaiyyaiaacIhaaaGaam4qamaaBaaaleaacaWGRb aabeaakmaapehabeWcbaGaaGimaaqaaiaadsfaa0Gaey4kIipakmaa pehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakiaayIW7daaeWb qabSqaaiaadUgacaaI9aGaaGimaaqaaiaad6gaa0GaeyyeIuoakiaa dchadaqhaaWcbaGaaGymaiaaiYcacaaIYaGaam4Aaaqaaiaaikdaaa GccaaIOaWaaSaaaeaacqGHciITaeaacqGHciITcaWG0baaamaalaaa baGaeyOaIy7aaWbaaSqabeaacaWGRbaaaOGaaGikaiabes7aKjaadw hacaaIPaaabaGaeyOaIyRaamiEamaaCaaaleqabaGaam4AaaaaaaGc caaIPaWaaWbaaSqabeaacaaMb8UaaGOmaaaakiaadsgacaWG4bGaaG jcVlaadsgacaWG0bGaeyizImQaeqiUde3aa8qCaeqaleaacaaIWaaa baGaamivaaqdcqGHRiI8aOWaa8qCaeqaleaacaaIWaaabaGaamiBaa qdcqGHRiI8aOGaamiAamaaCaaaleqabaGaaGOmaaaakiaaiIcacaWG 4bGaaGilaiaadshacaaIPaGaaGjcVlaadsgacaWG4bGaaGjcVlaads gacaWG0bGaaGilaaaa@86A4@     (37)

где θ=T e T σ l max k C k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH4oqCcaaI9aGaamivaiaadwgada ahaaWcbeqaaiaadsfaaaGccqaHdpWCdaWgaaWcbaGaamiBaaqabaGc daqfqaqabSqaaiaadUgaaeqakeaaciGGTbGaaiyyaiaacIhaaaGaam 4qamaaBaaaleaacaWGRbaabeaaaaa@3FE2@ . Подставив в формулу (27) оценки (36) и (37), получим утверждение теоремы.

Теперь применим полученные результаты и выпишем градиенты и сопряжённые смешанные задачи для некоторых рассмотренных ранее примеров. Задачи в примерах 1-7 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  являются однородными, поэтому имеет место равенство

  δ J L 1 2n = 0 l 0 τ ψ(x,t)h(x,t)dtdx, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWGkbWaaSbaaSqaaiaadY eadaqhaaqaaiaaigdaaeaacaaIYaGaamOBaaaaaeqaaOGaaGypamaa pehabeWcbaGaaGimaaqaaiaadYgaa0Gaey4kIipakmaapehabeWcba GaaGimaaqaaiabes8a0bqdcqGHRiI8aOGaeqiYdKNaaGikaiaadIha caaISaGaamiDaiaaiMcacaWGObGaaGikaiaadIhacaaISaGaamiDai aaiMcacaaMi8UaamizaiaadshacaaMi8UaamizaiaadIhacaaISaaa aa@541A@

где ψ(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaHipqEcaaIOaGaamiEaiaaiYcaca WG0bGaaGykaaaa@379C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  решение сопряжённой начально-краевой задачи.

Для примеров MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  в силу формулы (31) уравнение для сопряжённой функции совпадет с исходным уравнением, краевые условия также совпадут, а начальные условия будут определяться формулами (28). Отметим, что данные факты согласуются с известными результатами [6].

Для примеров , ситуация иная: краевые и начальные условия не меняются, но сопряжённое уравнение изменит свой вид. Отметим, что задачи управления колебаниями движущихся материалов рассматривались в работах разных исследователей, например, можно обратить внимание на обзор [11]. Для уравнения колебаний движущейся струны (4) имеем

δu 2 ψ t 2 + v 0 2 c 2 2 ψ x 2 +2 v 0 ψ 2 (δu) xt =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWG1bWaaeWaaeaadaWcaa qaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiabeI8a5bqaaiabgkGi 2kaadshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaeWaaeaaca WG2bWaa0baaSqaaiaaicdaaeaacaaIYaaaaOGaeyOeI0Iaam4yamaa CaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaalaaabaGaeyOaIy 7aaWbaaSqabeaacaaIYaaaaOGaeqiYdKhabaGaeyOaIyRaamiEamaa CaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaacqGHRaWkcaaIYa GaamODamaaBaaaleaacaaIWaaabeaakiabeI8a5naalaaabaGaeyOa Iy7aaWbaaSqabeaacaaIYaaaaOGaaGikaiabes7aKjaadwhacaaIPa aabaGaeyOaIyRaamiEaiabgkGi2kaadshaaaGaaGypaiaaicdacaaI Saaaaa@5F93@

здесь функция δu(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWG1bGaaGikaiaadIhaca aISaGaamiDaiaaiMcaaaa@386D@  удовлетворяет начальным условиям (25) и уравнению (31):

2 (δu) t 2 +2 v 0 2 (δu) xt +( v 0 2 c 2 ) 2 (δu) x 2 =h(x,t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiaaiIcacqaH0oazcaWG1bGaaGykaaqaaiabgkGi2kaa dshadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSIaaGOmaiaadAhada WgaaWcbaGaaGimaaqabaGcdaWcaaqaaiabgkGi2oaaCaaaleqabaGa aGOmaaaakiaaiIcacqaH0oazcaWG1bGaaGykaaqaaiabgkGi2kaadI hacqGHciITcaWG0baaaiabgUcaRiaaiIcacaWG2bWaa0baaSqaaiaa icdaaeaacaaIYaaaaOGaeyOeI0Iaam4yamaaCaaaleqabaGaaGOmaa aakiaaiMcadaWcaaqaaiabgkGi2oaaCaaaleqabaGaaGOmaaaakiaa iIcacqaH0oazcaWG1bGaaGykaaqaaiabgkGi2kaadIhadaahaaWcbe qaaiaaikdaaaaaaOGaaGypaiaadIgacaaIOaGaamiEaiaaiYcacaWG 0bGaaGykaiaai6caaaa@622B@

Для уравнения колебаний движущегося полотна (5) имеем

δu( 2 ψ t 2 +( v 0 2 c 2 ) 2 ψ x 2 + D m 4 ψ x 4 )+2 v 0 ψ 2 (δu) xt =0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWG1bGaaGikamaalaaaba GaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaeqiYdKhabaGaeyOaIyRa amiDamaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkcaaIOaGaamODam aaDaaaleaacaaIWaaabaGaaGOmaaaakiabgkHiTiaadogadaahaaWc beqaaiaaikdaaaGccaaIPaWaaSaaaeaacqGHciITdaahaaWcbeqaai aaikdaaaGccqaHipqEaeaacqGHciITcaWG4bWaaWbaaSqabeaacaaI YaaaaaaakiabgUcaRmaalaaabaGaamiraaqaaiaad2gaaaWaaSaaae aacqGHciITdaahaaWcbeqaaiaaisdaaaGccqaHipqEaeaacqGHciIT caWG4bWaaWbaaSqabeaacaaI0aaaaaaakiaaiMcacqGHRaWkcaaIYa GaamODamaaBaaaleaacaaIWaaabeaakiabeI8a5naalaaabaGaeyOa Iy7aaWbaaSqabeaacaaIYaaaaOGaaGikaiabes7aKjaadwhacaaIPa aabaGaeyOaIyRaamiEaiabgkGi2kaadshaaaGaaGypaiaaicdacaaI Saaaaa@6989@

здесь функция δu(x,t) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaacqaH0oazcaWG1bGaaGikaiaadIhaca aISaGaamiDaiaaiMcaaaa@386D@  удовлетворяет начальным условиям (25) и уравнению (31):

2 δu t 2 +2 v 0 2 δu xt + v 0 2 c 2 2 δu x 2 + D m 4 δu x 4 =h(x,t). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaebbnrfifHhDYfgasaacH8srps0l bbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0R Yxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGa caGaaeqabaWaaeaadaaakeaadaWcaaqaaiabgkGi2oaaCaaaleqaba GaaGOmaaaakiabes7aKjaadwhaaeaacqGHciITcaWG0bWaaWbaaSqa beaacaaIYaaaaaaakiabgUcaRiaaikdacaWG2bWaaSbaaSqaaiaaic daaeqaaOWaaSaaaeaacqGHciITdaahaaWcbeqaaiaaikdaaaGccqaH 0oazcaWG1baabaGaeyOaIyRaamiEaiabgkGi2kaadshaaaGaey4kaS YaaeWaaeaacaWG2bWaa0baaSqaaiaaicdaaeaacaaIYaaaaOGaeyOe I0Iaam4yamaaCaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaala aabaGaeyOaIy7aaWbaaSqabeaacaaIYaaaaOGaeqiTdqMaamyDaaqa aiabgkGi2kaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaey4kaSYaaS aaaeaacaWGebaabaGaamyBaaaadaWcaaqaaiabgkGi2oaaCaaaleqa baGaaGinaaaakiabes7aKjaadwhaaeaacqGHciITcaWG4bWaaWbaaS qabeaacaaI0aaaaaaakiaai2dacaWGObGaaGikaiaadIhacaaISaGa amiDaiaaiMcacaaIUaaaaa@692F@

Замечание. Для уравнения колебаний движущегося вязкоупругого полотна (6) полученные результаты неприменимы, так как оператор L32n/x для этого уравнения не является симметричным.

Конфликт интересов

Автор данной работы заявляет, что у него нет конфликта интересов.

×

Об авторах

А. М. Романенков

Московский авиационный институт; ФИЦ “Информатика и управление” РАН

Автор, ответственный за переписку.
Email: romanaleks@gmail.com
Россия, г. Москва; г. Москва

Список литературы

  1. Hyperbolic models arising in the theory of longitudinal vibration of elastic bars / I. Fedotov, J. Marais, M. Shatalovand, H.M. Tenkam // The Australian J. of Math. Anal. and Appl. — 2011. — V. 7, № 2. — P. 1–18.
  2. Abdulazeez, S.T. Solutions of fractional order pseudo-hyperbolic telegraph partial differential equations using finite difference method / S.T. Abdulazeez, M. Modanli // Alexandria Engineering J. — 2022. — V. 61, № 12. — P. 12443–12451.
  3. Abdulazeez, S.T. Numerical scheme methods for solving nonlinear pseudo-hyperbolic partial differential equations / S.T. Abdulazeez, M. Modanli, A.M. Husien // J. of Appl. Math. and Comput. Mech. — 2022. — V. 4, № 21. — P. 5–15.
  4. Zhao, Z. A continuous Galerkin method for pseudo-hyperbolic equations with variable coefficients / Z. Zhao, H. Li // J. of Math. Anal. and Appl. — 2019. — V. 473, № 2. — P. 1053–1072.
  5. Эванс, Л.К. Уравнения с частными производными / Л.К. Эванс ; пер. с англ. — Новосибирск: Тамара Рожковская, 2003. — 560 с.
  6. Васильев, Ф.П. Методы оптимизации : учебное пособие / Ф.П. Васильев. — М. : МЦНМО, 2011. — 434 с.
  7. Рудаков, И.А. Задача о колебаниях двутавровой балки с закрепленным и шарнирно опертым концами / И.А. Рудаков // Вестн. МГТУ имени Н.Э. Баумана. Сер. Естеств. науки. — 2019. — № 3. — С. 4–21.
  8. Керефов, М.А. Численно-аналитический метод решения краевой задачи для обобщённых уравнений влагопереноса / М.А. Керефов, С.Х. Геккиева // Вестн. Удмуртского ун-та. Матем. Мех. Компьют. науки. — 2021. — Т. 31, № 1. — С. 19–34.
  9. Mechanics of Moving Materials / Banichuk N., Jeronen J., Neittaanäki P. [et al.]. — Springer, 2014.
  10. Самарский, А.А. Вычислительная теплопередача / А.А. Самарский, П.Н. Вабищевич. — М.: URSS, 2020. — 784 с.
  11. Hong, K.-S. Control of axially moving systems / K.-S. Hong, P.-T. Pham // A Review. Int. J. Control Autom. Syst. — 2019. — V. 17. — P. 2983–3008.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).