Gradient in the problem of controlling processes described by linear pseudohyperbolic equations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper considers the problem of controlling processes, the mathematical model of which is an initial-boundary value problem for a pseudohyperbolic linear differential equation of high order in the spatial variable and second order in the time variable. The pseudohyperbolic equation is a generalization of the ordinary hyperbolic equation, which is typical in vibration theory. As examples, models of vibrations of moving elastic materials were considered. For model problems, an energy identity is established, and conditions for the uniqueness of a solution are formulated. As an optimization problem, we considered the problem of controlling the right side in order to minimize the quadratic integral functional, which evaluates the proximity of the solution to the objective function. From the original functional a transition was made to the majorant functional, for which the corresponding upper bound was established. An explicit expression for the gradient of this functional is obtained, and conjugate initial-boundary value problems are derived.

Full Text

Restricted Access

About the authors

A. M. Romanenkov

Moscow Avaition Institute; Research Center “Informatics and Control” of RAS

Author for correspondence.
Email: romanaleks@gmail.com
Russian Federation, Moscow; Moscow

References

  1. Hyperbolic models arising in the theory of longitudinal vibration of elastic bars / I. Fedotov, J. Marais, M. Shatalovand, H.M. Tenkam // The Australian J. of Math. Anal. and Appl. — 2011. — V. 7, № 2. — P. 1–18.
  2. Abdulazeez, S.T. Solutions of fractional order pseudo-hyperbolic telegraph partial differential equations using finite difference method / S.T. Abdulazeez, M. Modanli // Alexandria Engineering J. — 2022. — V. 61, № 12. — P. 12443–12451.
  3. Abdulazeez, S.T. Numerical scheme methods for solving nonlinear pseudo-hyperbolic partial differential equations / S.T. Abdulazeez, M. Modanli, A.M. Husien // J. of Appl. Math. and Comput. Mech. — 2022. — V. 4, № 21. — P. 5–15.
  4. Zhao, Z. A continuous Galerkin method for pseudo-hyperbolic equations with variable coefficients / Z. Zhao, H. Li // J. of Math. Anal. and Appl. — 2019. — V. 473, № 2. — P. 1053–1072.
  5. Evans, L.C. Partial Differential Equations / L.C. Evans. — Berkeley: American Mathematical Society, 2010.
  6. Vasil’ev, F.P. Optimization Methods: a textbook / F.P. Vasil’ev. Moscow: MCCME, 2011. — 434 p.
  7. Rudakov, I.A. Oscillation problem for an I-beam with fixed and hinged end supports / I.A. Rudakov // Herald of the Bauman Moscow State Technical University. Series Natural Sciences. — 2019. — № 3. — P. 4–21.
  8. Kerefov, M.A. Numerical-analytical method for solving boundary value problem for the generalized moisture transport equation / M.A. Kerefov, S.H. Gekkieva // Vestn. Udmurtskogo un-ta. Matem. Mekh. Komp’yut. nauki. — 2021. — V. 31, № 2. — P. 19–34.
  9. Mechanics of Moving Materials / Banichuk N., Jeronen J., Neittaanäki P. [et al.]. — Springer, 2014.
  10. Samarskij, A.A. Vychislitel’naya teploperedacha / A.A. Samarskij, P.N. Vabishchevich. Moscow: URSS, 2020. — 784 p.
  11. Hong, K.-S. Control of axially moving systems / K.-S. Hong, P.-T. Pham // A Review. Int. J. Control Autom. Syst. — 2019. — V. 17. — P. 2983–3008.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».