POISSON FORMULA FOR SOLVING THE RADIAL CAUCHY PROBLEM FOR A SINGULAR ULTRAHYPERBOLIC EQUATION
- Authors: Lyakhov L.N1,2,3, Bulatov Y.N3
-
Affiliations:
- Voronezh State University
- Lipetsk State Pedagogical University named after P.P. Semenov-Tyan-Shansky
- Yelets State University named after I.A. Bunin
- Issue: Vol 61, No 2 (2025)
- Pages: 229-241
- Section: PARTIAL DERIVATIVE EQUATIONS
- URL: https://ogarev-online.ru/0374-0641/article/view/299128
- DOI: https://doi.org/10.31857/S0374064125020086
- EDN: https://elibrary.ru/HWNDTA
- ID: 299128
Cite item
Abstract
About the authors
L. N Lyakhov
Voronezh State University; Lipetsk State Pedagogical University named after P.P. Semenov-Tyan-Shansky; Yelets State University named after I.A. Bunin
Email: levnlya@mail.ru
Yu. N Bulatov
Yelets State University named after I.A. Bunin
Email: y.bulatov@bk.ru
References
- Lyakhov, L.N. and Sanina, E.L., Differential and integral operations in hidden spherical symmetry and the dimension of the Koch curve, Math. Notes, 2023, vol. 113, no. 4, pp. 502–511.
- Lyakhov, L.N. and Sanina, E.L., Kipriyanov–Beltrami operator with negative dimension of the Bessel operators and the singular Dirichlet problem for the 𝐵-harmonic equation, Differ. Equat., 2020, vol. 56, no. 12, pp. 1564–1574.
- Kipriyanov, I.A., Singulyarnye ellipticheskie kraevye zadachi (Singular Elliptic Boundary Value Problems), Moscow: Nauka, 1997.
- Mandelbrot, B., The Fractal Geometry of Nature, United States: Henry Holt and Co., 1983.
- Metzler, R. Fractional model equation for anomalous diffusion / R. Metzler, W.G. Gl¨ockle, Th.F. Nonnenmacher // Phys. A: Stat. Mech. Appl. — 1994. — V. 211, № 1. — P. 13–24.
- Levitan, B.M., Expansion into Fourier series and integrals in Bessel functions, Usp. Mat. Nauk, 1951, vol. 6, no. 2 (42), pp. 102–143.
- Lyakhov, L.N., Polovinkin, I.P., and Shishkina, E.L., On a Kipriyanov problem for a singular ultrahyperbolic equation, Differ. Equat., 2014, vol. 50, no. 4, pp. 516–528.
- Lyakhov, L.N., Bulatov, Yu.N., Roshchupkin, S.A., and Sanina, E.L., Pseudoshift and the fundamental solution of the Kipriyanov Δ𝐵-operator, Differ. Equat., 2022, vol. 58, no. 12, pp. 1639–1650.
- Sabitov, K.B. and Zaitseva, N.V., The second initial-boundary value problem for a 𝐵-hyperbolic equation, Russ. Math., 2019, vol. 63, no. 10, pp. 66–76.
- Sabitov, K.B. and Zaitseva, N.V., Initial value problem for 𝐵-hyperbolic equation with integral condition of the second kind, Differ. Equat., 2018, vol. 54, no. 1, pp. 121–133.
- Sabitov, K.B., On the uniform convergence of the expansion of a function in the Fourier–Bessel range, Russ. Math., 2022, vol. 66, no. 11, pp. 79–85.
- Lyakhov, L.N., Sanina, E.L., Roshchupkin, S.A., and Bulatov, Yu.N., Fundamental solution of a singular Bessel differential operator with a negative parameter, Russ. Math., 2023, vol. 67, no. 7, pp. 43–54.
- Levitan, B.M., Teoriya operatorov obobshchennogo sdviga (Theory of Generalized Shift Operators), Moscow: Nauka, 1973.
- Levitan, B.M., Application of generalized shift operators to second-order linear differential equations, Usp. Mat. Nauk, 1949, vol. 4, no. 1 (29), pp. 3–112.
- Kipriyanov, I.A. and Klyuchantsev, M.I., Singular integrals that are generated by a generalized shift operator, Siberian Math. J., 1970, vol. 11, no. 5, pp. 787–804.
- Shishkina, E.L., Uniqueness of the solution of the Cauchy problem for the general Euler–Poisson–Darboux equation, Differ. Equat., 2022, vol. 58, no. 12, pp. 1673–1679.
- Tersenov, S.A., Vvedeniye v teoriyu uravneniy, vyrozhdayushchikhsya na granitse (Introduction to the Theory of Equations that Degenerate at the Boundary), Novosibirsk: NSU, 1973.
Supplementary files
