THE PROBLEM OF A LINER TAPE FAILING ONTO AN INCLINED SUPPORT

Cover Page

Cite item

Full Text

Abstract

The problem of numerical simulation of the contact interaction of a metal tape moving at a speed of about 0.5 km/s with a fixed inclined support for a time of about 100 𝜇s is considered. A two-dimensional approximation was used; an elastoplastic body model for large deformations was used to describe the tape and support. To take into account the boundary conditions on contacting surfaces, an iterative algorithm related to Neumann–Dirichlet type methods was used in the calculations. The finite element method is used for spatial discretization. The calculation results are presented. A number of model one-dimensional problems are considered, which make it possible to qualitatively evaluate the results obtained in the two-dimensional case.

About the authors

M. P. Galanin

Keldysh Institute of Applied Mathematics of RAS

Email: galan@keldysh.ru
Moscow, Russia

A. S. Rodin

Keldysh Institute of Applied Mathematics of RAS

Email: rals@bk.ru
Moscow, Russia

References

  1. Галанин, М.П. Математическое моделирование движения лайнера в различных сечениях магнитного компрессора / М.П. Галанин, А.П. Лотоцкий, А.С. Родин // Мат. моделирование. — 2010. — Т. 22, № 10. — С. 35–55.
  2. Galanin, M.P., Lotoskii, A.P., and Rodin, A.S., Motion of liner in various sections of magnetic compressor, Math. Models and Comp. Simul., 2011, vol. 3, no. 3, pp. 273–289.
  3. Коробейников, С.Н. Нелинейное деформирование твёрдых тел / С.Н. Коробейников. — Новосибирск : Изд-во СО РАН, 2000. — 262 c.
  4. Korobeinikov, S.N., Nelineynoye deformirovaniye tverdykh tel (Nonlinear Deformation of Solids), Novosibirsk: Izdatelstvo SO RAN, 2000.
  5. Wriggers, P. Computational Contact Mechanics / P. Wriggers. — Berlin-Heidelberg : Springer-Verlag, 2006. — 518 p.
  6. Wriggers, P., Computational Contact Mechanics, Berlin–Heidelberg: Springer-Verlag, 2006.
  7. Toselli, A. Domain Decomposition Methods — Algorithms and Theory / A. Toselli, O. Widlund. — Berlin-Heidelberg : Springer-Verlag, 2005. — 450 p.
  8. Toselli, A. and Widlund, O., Domain Decomposition Methods — Algorithms and Theory, Berlin–Heidelberg: Springer-Verlag, 2005.
  9. Галанин, М.П. Исследование и применение метода декомпозиции области для моделирования тепловыделяющего элемента / М.П. Галанин, А.С. Родин // Журн. вычислит. математики и мат. физики. — 2022. — Т. 62, № 4. — С. 659–676.
  10. Galanin, M.P. and Rodin, A.S., Investigation and application of the domain decomposition method for simulating fuel elements, Comput. Math. Math. Phys., 2022, vol. 62, no. 4, pp. 641–657.
  11. Bayada, G. Convergence of a Neumann–Dirichlet algorithm for two-body contact problems with non local Coulomb’s friction law / G. Bayada, J. Sabil, T. Sassi // Math. Model. Numer. Anal. — 2008. — V. 42. — P. 243–262.
  12. Bayada, G., Sabil, J., and Sassi, T., Convergence of a Neumann–Dirichlet algorithm for two-body contact problems with non local Coulomb’s friction law, Math. Model. Numer. Anal., 2008, vol. 42, pp. 243–262.
  13. Тихонов, А.Н. Уравнения математической физики / А.Н. Тихонов, А.А. Самарский. — М. : Наука, 1972. — 736 c.
  14. Tichonov, A.N. and Samarskii, A.A., Uravneniya matematicheskoy fiziki (Equations of Mathematical Physics), Moscow: Nauka, 1972.
  15. Агошков, В.И. Уравнения математической физики / В.И. Агошков, П.Б. Дубовский, В.П. Шутяев. — М. : Физматлит, 2002. — 320 c.
  16. Agoshkov, V.I., Dubovskii, P.B., and Shutiaev, V.P., Metody resheniya zadach matematicheskoy fiziki (Methods for Solving Problems of Mathematical Physics), Moscow: Fizmatlit, 2002.
  17. Галанин, М.П. Математическое моделирование: теория и применение / М.П. Галанин, Н.А. Тихонов, М.Г. Токмачев. — М. : Ленанд, 2022. — 598 c.
  18. Galanin, M.P., Tichonov, N.A., and Tokmachev, M.G., Matematicheskoye modelirovaniye: teoriya i primeneniye (Mathematical Modeling: Theory and Application), Moscow: Lenand, 2022.
  19. Партон, В.З. Методы математической теории упругости / В.З. Партон, П.И. Перлин. — М. : Наука, 1981. — 688 c.
  20. Parton, V.Z. and Perlin, P.I., Mathematical Methods of the Theory of Elasticity, Moscow: MIR, 1984.
  21. Будак, Б.М. Сборник задач по математической физике / Б.М. Будак, А.А. Самарский, А.Н. Тихонов. — М. : Наука, 1988. — 686 c.
  22. Budak, B.M., Samarskii, A.A., and Tichonov, A.N., Sbornik zadach po matematicheskoy fizike (Collection of Problems in Mathematical Physics), Moscow: Nauka, 1988.
  23. Седов, Л.И. Механика сплошной среды. В 2-х т. / Л.И. Седов. — М. : Наука, 1994. — Т. 2. — 568 c.
  24. Sedov, L.I., Mekhanika sploshnoy sredy (Continuum Mechanics), vol. 2, Moscow: Nauka, 1994.
  25. Дьяконов, В.П. Mathematica 5/6/7. Полное руководство / В.П. Дьяконов. — М. : ДМК Пресс, 2010. — 624 c.
  26. Diakonov, V.P., Mathematica 5/6/7. Polnoye rukovodstvo (Mathematica 5/6/7. Complete Guide), Moscow: DMK Press, 2010.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).