SOLUTION OF THE SPECTRUM ALLOCATION PROBLEM FOR A LINEAR CONTROL SYSTEM WITH CLOSED FEEDBACK
- Authors: Zubova S.P1, Raetskaya E.V2
-
Affiliations:
- Voronezh State University
- Voronezh State Forestry University named after G.F. Morozov
- Issue: Vol 60, No 6 (2024)
- Pages: 798-816
- Section: CONTROL THEORY
- URL: https://ogarev-online.ru/0374-0641/article/view/265614
- DOI: https://doi.org/10.31857/S0374064124060065
- EDN: https://elibrary.ru/KWCWHQ
- ID: 265614
Cite item
Abstract
About the authors
S. P Zubova
Voronezh State University
Email: spzubova@mail.ru
Russia
E. V Raetskaya
Voronezh State Forestry University named after G.F. Morozov
Email: raetskaya@inbox.ru
Russia
References
- Shumafov, M.M., Stabilization of linear control systems. The problem of pole assignment. Review, Vestnik SPbGU. Mathematika. Mechanika. Astronomija, 2019, vol. 6 (64), no. 4, pp. 564–591.
- Zubov, V.I., Teoriya optimal’nogo upravleniya (Optimal Control Theory), Leningrad: Sudpromgiz, 1966.
- Wonham, W.M. On pole assignment in multi-input controllable linear systems / W.M. Wonham // IEEE Trans. Aut. Contr. — 1967. — V. AC–12, № 6. — P. 660–665.
- Leonov, G.A. and Shumafov, M.M. Metodu stabilizacii lineinuh ypravlaemuh sistem (Methods for Stabilization of Linear Controlled Systems), SPb.: SPbSU Press, 2005.
- Zubov, N.E., Mikrin, E.A, and Rjabchen, V.N., Matrichnye metody v teorii i praktike avtomaticheskogo upravlenija letatelnuh apparatov (Matrix Methods in the Theory and Practice of Automatic Control of Aircrafts), Moscow: Izd-vo MGTU im. Baymana (Bauman Press), 2016.
- Lapin, A.V. and Zubov, N.E., Implementation in the MATLAB environment of analytical algorithms for modal control by state and by exit, Inzhenernuj zhurnal: nauka i innivacii (Engineering Journal: Science and Innovation), 2020, vol. 1, pp. 1–16.
- A unified method arbitrary pole placement / R. Schmid, L. Ntogramatzidis, T. Nguyen, A. Pandey // Automatika. — 2014. — V. 50. — P. 2150–2154.
- Zubova, S.P. Solution of the multi-point control problem for a dynamic system in partial derivatives / S.P. Zubova, E.V. Raetskaya // Math. Methods in the Appl. Sci. — 2021. — V. 44, № 15. — P. 11998–12009.
- Zubova, S.P. and Raetskaya, E.V., Algorithm to solve linear multipoint problems of control by the method of cascade decomposition, Automation and Remote Control, 2017, vol. 78, no. 7, pp. 1189–1202.
- Zubova, S.P., Solution of inverse problems for linear dynamical systems by the cascade method, Dokl. Math., 2012, vol. 86, no. 3, pp. 846–849.
- Zubova, S.P., Solution of the control problem for linear descriptor system with rectangular coefficient matrix, Math. Notes, 2010, vol. 88, no. 5–6, pp. 844–854.
- Zubova, S.P., Trung, L.H., and Raetskaya, E.V., On polinomial solutions of the linear stationary control system, Automation and Remote Control, 2008, vol. 69, no. 11, pp. 1852–1858.
- Atkinson, F.V., Normal solvability of linear equations in normed spaces, Mat. Sbornik, 1951, vol. 28 (70), no. 1, pp. 3–14.
- Bortakovsky, A.S. and Panteleev, A.V., Lineinaja algebra v primerah i zadachach (Linear Algebra in Examples and Problems), Moscow, 2005.
- Andreev, U.N., Ypravlenie konechnomernumi lineinumi objektami (Control of Finite-Dimensional Linear Objects), Moscow: Nauka, 1976.
- Vainberg, M.M. and Trenogin, V.A., Teorija vetvlenija reshenij nelineinuh yravnenij (Branching Theory for Solutions to Nonlinear Equations), Moscow: Nauka, 1969.
Supplementary files
