EXISTENCE OF A RENORMALIZED SOLUTION OF A QUASI-LINEAR ELLIPTIC EQUATION WITHOUT THE SIGN CONDITION ON THE LOWEST TERM
- Authors: Kozhevnikova L.M1,2
-
Affiliations:
- Sterlitamak branch of Ufa University of Science and Technology
- Elabuga Institute of Kazan (Volga region) Federal University
- Issue: Vol 60, No 6 (2024)
- Pages: 764-785
- Section: PARTIAL DERIVATIVE EQUATIONS
- URL: https://ogarev-online.ru/0374-0641/article/view/265612
- DOI: https://doi.org/10.31857/S0374064124060043
- EDN: https://elibrary.ru/KWHVAO
- ID: 265612
Cite item
Abstract
About the authors
L. M Kozhevnikova
Sterlitamak branch of Ufa University of Science and Technology; Elabuga Institute of Kazan (Volga region) Federal University
Email: kosul@mail.ru
Sterlitamak, Russia; Elabuga, Russia
References
- Gwiazda, P. Existence of renormalized solutions to elliptic equation in Musielak–Orlicz space / P. Gwiazda, I. Skrzypczaka, A. Zatorska-Goldstein // J. Differ. Equat. — 2018. — V. 264. — P. 341–377.
- Ait Khellou, M. Renormalized solution for nonlinear elliptic problems with lower order terms and 𝐿1 data in Musielak–Orlicz spaces / M. Ait Khellou, A. Benkirane // Annals of the University of Craiova. Mathematics and Computer Science Series. — 2016. — V. 43, № 2. — P. 164–187.
- Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with 𝐿1 data / M.S.B. Elemine Vall, T. Ahmedatt, A. Touzani, A. Benkirane // Bol. Soc. Paran. Mat. — 2018. — V. 36, suppl. 1. — P. 125—150.
- Ying, Li. Entropy and renormalized solutions to the general nonlinear elliptic equations in Musielak– Orlicz spaces / Li Ying, Y. Fengping, Zh. Shulin // Nonlinear Analysis: Real World Applications. — 2021. — V. 61. — P. 1–20.
- Vil’danova, V.F. and Mukminov, F.Kh., Entropy solution for an equation with measure-valued potential in a hyperbolic space, Sb. Math., 2023, vol. 214, no. 11, pp. 1534–1559.
- Vil’danova, V.F. and Mukminov, F.Kh., Entropy solution for an equation with measure-valued potential in a hyperbolic space, Sb. Math., 2023, vol. 214, no. 11, pp. 1534–1559.
- Kozhevnikova, L.M., Entropy and renormalized solutions of anisotropic elliptic equations with variable nonlinearity exponents, Sb. Math., 2019, vol. 210, no. 3, pp. 417–446.
- Kozhevnikova, L.M. On solutions of anisotropic elliptic equations with variable exponent and measure data / L.M. Kozhevnikova // Complex Variables and Elliptic Equations. — 2020. — V. 65, № 3. — P. 337–367.
- Kozhevnikova, L.M. On Solutions of Elliptic Equations with Variable Exponents and Measure Data in 𝑅𝑛 / L.M. Kozhevnikova // Differential Equations on Manifolds and Mathematical Physics, Dedicated to the Memory of Boris Sternin ; eds. V.M. Manuilov, A.S. Mishchenko, V.E. Nazaikinskii, B.-W. Schulze, W. Zhang. — Cham : Birkh¨auser, 2021. — P. 221–239.
- Kashnikova, A.P., Kozhevnikova, L.M., Existence of solutions of nonlinear elliptic equations with measure data in Musielak–Orlicz spaces, Sb. Math., 2022, vol. 213, no. 4, pp. 476–511.
- Nonlinear unilateral problems without sign condition in Musielak spaces / S.M. Douiri, A. Benkirane, M. Ait Khellou, Y. El Hadfi // Analysis and Mathematical Physics. — 2021. — V. 11, suppl. 66. — P. 1–26.
- Existence of renormalized solutions for a nonlinear elliptic equation in Musielak framework and 𝐿1 / T. Ahmdatt, M.S.B. Elemine Vall, A. Benkirane, A. Touzani // Annals of the University of Craiova. Mathematics and Computer Science Series. — 2017. — V. 44, suppl. 2. — P. 190–213.
- Musielak, J. Orlicz Spaces and Modular Spaces / J. Musielak. — Berlin : Springer-Verlag, 1983. — 222 p.
- Benkirane, A. An existence result for nonlinear elliptic equations in Musielak–Orlicz–Sobolev spaces / A. Benkirane, M. Sidi El Vally // Bull. Belg. Math. Soc. Simon Stevin. — 2013. — V. 20, № 1. — P. 57–75.
- Gossez’s approximation theorems in Musielak–Orlicz–Sobolev spaces / Y. Ahmida, I. Chlebicka, P. Gwiazda, A. Youssfi // J. Funct. Anal. — 2018. — V. 275, suppl. 9. — P. 2538–2571.
- Kozhevnikova, L.M. On solutions of nonlinear elliptic equations with 𝐿1-data in unbounded domains / L.M. Kozhevnikova // Lobachevskii J. Math. — 2023. — V. 44, № 5. — P. 1879–1901.
- Dunford, N. and Schwartz, J.T., Linear Operators, V. I: General Theory, New York, London: Interscience Publishers, 1958.
- Chlebicka, I. Measure data elliptic problems with generalized Orlicz growth / I. Chlebicka // Proc. of the Royal Society of Edinburgh. Sect. A. — 2023. — V. 153, № 2. — P. 588–618.
- Benkirane, A. Variational inequalities in Musielak–Orlicz–Sobolev spaces / A. Benkirane, M. Sidi El Vally // Bull. Belg. Math. Soc. Simon Stevin. — 2014. — V. 21, № 5. — P. 787–811.
Supplementary files
