EXISTENCE OF A RENORMALIZED SOLUTION OF A QUASI-LINEAR ELLIPTIC EQUATION WITHOUT THE SIGN CONDITION ON THE LOWEST TERM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper considers a second-order quasilinear elliptic equation with an integrable right-hand side. Restrictions on the structure of the equation are formulated in terms of the generalized 𝑁-function. Unlike the author’s previous works, there is no sign condition for the low-order term of the equation. In non-reflexive Musielak–Orlicz–Sobolev spaces in an arbitrary unbounded strictly Lipschitz domain, the existence of a renormalized solution to the Dirichlet problem of this equation is proven.

About the authors

L. M Kozhevnikova

Sterlitamak branch of Ufa University of Science and Technology; Elabuga Institute of Kazan (Volga region) Federal University

Email: kosul@mail.ru
Sterlitamak, Russia; Elabuga, Russia

References

  1. Gwiazda, P. Existence of renormalized solutions to elliptic equation in Musielak–Orlicz space / P. Gwiazda, I. Skrzypczaka, A. Zatorska-Goldstein // J. Differ. Equat. — 2018. — V. 264. — P. 341–377.
  2. Ait Khellou, M. Renormalized solution for nonlinear elliptic problems with lower order terms and 𝐿1 data in Musielak–Orlicz spaces / M. Ait Khellou, A. Benkirane // Annals of the University of Craiova. Mathematics and Computer Science Series. — 2016. — V. 43, № 2. — P. 164–187.
  3. Existence of entropy solutions for nonlinear elliptic equations in Musielak framework with 𝐿1 data / M.S.B. Elemine Vall, T. Ahmedatt, A. Touzani, A. Benkirane // Bol. Soc. Paran. Mat. — 2018. — V. 36, suppl. 1. — P. 125—150.
  4. Ying, Li. Entropy and renormalized solutions to the general nonlinear elliptic equations in Musielak– Orlicz spaces / Li Ying, Y. Fengping, Zh. Shulin // Nonlinear Analysis: Real World Applications. — 2021. — V. 61. — P. 1–20.
  5. Vil’danova, V.F. and Mukminov, F.Kh., Entropy solution for an equation with measure-valued potential in a hyperbolic space, Sb. Math., 2023, vol. 214, no. 11, pp. 1534–1559.
  6. Vil’danova, V.F. and Mukminov, F.Kh., Entropy solution for an equation with measure-valued potential in a hyperbolic space, Sb. Math., 2023, vol. 214, no. 11, pp. 1534–1559.
  7. Kozhevnikova, L.M., Entropy and renormalized solutions of anisotropic elliptic equations with variable nonlinearity exponents, Sb. Math., 2019, vol. 210, no. 3, pp. 417–446.
  8. Kozhevnikova, L.M. On solutions of anisotropic elliptic equations with variable exponent and measure data / L.M. Kozhevnikova // Complex Variables and Elliptic Equations. — 2020. — V. 65, № 3. — P. 337–367.
  9. Kozhevnikova, L.M. On Solutions of Elliptic Equations with Variable Exponents and Measure Data in 𝑅𝑛 / L.M. Kozhevnikova // Differential Equations on Manifolds and Mathematical Physics, Dedicated to the Memory of Boris Sternin ; eds. V.M. Manuilov, A.S. Mishchenko, V.E. Nazaikinskii, B.-W. Schulze, W. Zhang. — Cham : Birkh¨auser, 2021. — P. 221–239.
  10. Kashnikova, A.P., Kozhevnikova, L.M., Existence of solutions of nonlinear elliptic equations with measure data in Musielak–Orlicz spaces, Sb. Math., 2022, vol. 213, no. 4, pp. 476–511.
  11. Nonlinear unilateral problems without sign condition in Musielak spaces / S.M. Douiri, A. Benkirane, M. Ait Khellou, Y. El Hadfi // Analysis and Mathematical Physics. — 2021. — V. 11, suppl. 66. — P. 1–26.
  12. Existence of renormalized solutions for a nonlinear elliptic equation in Musielak framework and 𝐿1 / T. Ahmdatt, M.S.B. Elemine Vall, A. Benkirane, A. Touzani // Annals of the University of Craiova. Mathematics and Computer Science Series. — 2017. — V. 44, suppl. 2. — P. 190–213.
  13. Musielak, J. Orlicz Spaces and Modular Spaces / J. Musielak. — Berlin : Springer-Verlag, 1983. — 222 p.
  14. Benkirane, A. An existence result for nonlinear elliptic equations in Musielak–Orlicz–Sobolev spaces / A. Benkirane, M. Sidi El Vally // Bull. Belg. Math. Soc. Simon Stevin. — 2013. — V. 20, № 1. — P. 57–75.
  15. Gossez’s approximation theorems in Musielak–Orlicz–Sobolev spaces / Y. Ahmida, I. Chlebicka, P. Gwiazda, A. Youssfi // J. Funct. Anal. — 2018. — V. 275, suppl. 9. — P. 2538–2571.
  16. Kozhevnikova, L.M. On solutions of nonlinear elliptic equations with 𝐿1-data in unbounded domains / L.M. Kozhevnikova // Lobachevskii J. Math. — 2023. — V. 44, № 5. — P. 1879–1901.
  17. Dunford, N. and Schwartz, J.T., Linear Operators, V. I: General Theory, New York, London: Interscience Publishers, 1958.
  18. Chlebicka, I. Measure data elliptic problems with generalized Orlicz growth / I. Chlebicka // Proc. of the Royal Society of Edinburgh. Sect. A. — 2023. — V. 153, № 2. — P. 588–618.
  19. Benkirane, A. Variational inequalities in Musielak–Orlicz–Sobolev spaces / A. Benkirane, M. Sidi El Vally // Bull. Belg. Math. Soc. Simon Stevin. — 2014. — V. 21, № 5. — P. 787–811.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».