GROUP ANALYSES, REDUCTIONS AND EXACT SOLUTIONS OF MONGE–AMPERE EQUATION OF MAGNETIC HYDRODYNAMICS
- Authors: Aksenov A.V1, Polyanin A.D2
-
Affiliations:
- Lomonosov Moscow State University
- Ishlinsky Institute for Problems in Mechanics of RAS
- Issue: Vol 60, No 6 (2024)
- Pages: 750-763
- Section: PARTIAL DERIVATIVE EQUATIONS
- URL: https://ogarev-online.ru/0374-0641/article/view/265611
- DOI: https://doi.org/10.31857/S0374064124060032
- EDN: https://elibrary.ru/KWLDDX
- ID: 265611
Cite item
Abstract
Keywords
About the authors
A. V Aksenov
Lomonosov Moscow State University
Email: aksenov@mech.math.msu.su
Russia
A. D Polyanin
Ishlinsky Institute for Problems in Mechanics of RAS
Email: polyanin@ipmnet.ru
Moscow, Russia
References
- Smirnov, V.V. “Phonons” in two-dimensional vortex lattices / V.V. Smirnov, K.V. Chukbar // J. Experiment. Theor. Phys. — 2001. — V. 93, № 1. — P. 126–135.
- Zaburdaev, V.Yu. Nonlinear dynamics of electron vortex lattices / V.Yu Zaburdaev, V.V. Smirnov, K.V. Chukbar // Plasma Physics Reports. — 2014. — V. 30, № 3. — P. 214–217.
- Krylov, N.V., Sequences of convex functions, and estimates of the maximum of the solution of a parabolic equation, Siberian Math. J., 1976, vol. 17, no. 2, pp. 226–236.
- Chen, L. Convex-monotone functions and generalized solution of parabolic Monge–Amp`ere equation / L. Chen, G. Wang, S. Lian // J. Differ. Equat. — 2002. — V. 186, № 2. — P. 558–571.
- Xiong, J. On Jorgens, Calabi, and Pogorelov type theorem and isolated singularities of parabolic Monge–Amp`ere equations / J. Xiong, J. Bao // J. Differ. Equat. — 2011. — V. 250, № 1. — P. 367–385.
- Tang, L. Regularity results on the parabolic Monge–Amp`ere equation with VMO type data / L. Tang // J. Differ. Equat. — 2013. — V. 255, № 7. — P. 1646–1656.
- Dai, L. Exterior problems for a parabolic Monge–Amp`ere equation / L. Dai // Nonlin. Anal. Theory, Methods & Appl. — 2014. — V. 100. — P. 99–110.
- Tang, L. Boundary regularity on the parabolic Monge–Amp`ere equation / L. Tang // J. Differ. Equat. — 2015. — V. 259. — P. 6399–6431.
- Pogorelov, A.V., Extrinsic Geometry of Convex Surfaces, Amer. Math. Soc., 1973.
- Polyanin, A.D. Handbook of Nonlinear Partial Differential Equations / A.D. Polyanin, V.F. Zaitsev. — 2nd ed. — Boca Raton : CRC Press, 2012. — 1876 p.
- Khabirov, S.V., Nonisentropic one-dimensional gas motions constructed by means of the contact group of the nonhomogeneous Monge–Amp`ere equation, Math. USSR-Sb., 1992, vol. 71, no. 2, pp. 447–462
- Sulman, M.M. An efficient approach for the numerical solution of the Monge–Amp`ere equation / M.M. Sulman, J.F. Williams, R.D. Russell // Appl. Numer. Math. — 2011. — V. 61, № 3. — P. 298–307.
- Feng, X. Nonstandard local discontinuous Galerkin methods for fully nonlinear second order elliptic and parabolic equations in high dimensions / X. Feng, T. Lewis // J. Scient. Comput. — 2018. — V. 77, № 3. — P. 1534–1565.
- Dubinov, A.E. New exact solutions of the equation of non-linear dynamics of a lattice of electronic vortices in plasma in the framework of electron magnetohydrodynamics / A.E. Dubinov, I.N. Kitayev // Magnetohydrodynamics. — 2020. — V. 56, № 4. — P. 369–375.
- Rakhmelevich, I.V., Non-autonomous evolutionary equation of Monge–Amp`ere type with two space variables, Russ. Math., 2023, vol. 67, no. 2, pp. 52–64.
- Polyanin, A.D. Separation of Variables and Exact Solutions to Nonlinear PDEs / A.D. Polyanin, A.I. Zhurov. — Boca Raton ; London : CRC Press, 2022. — 401 p.
- Ovsiannikov, L.V., Group Analysis of Differential Equations, New York: Academic Press, 1982.
- Kosov, A.A. and Semenov, E.I., Reduction method and new exact solutions of the multidimensional nonlinear heat equation, Differ. Equat., 2022, vol. 58, no. 2, pp. 187–194.
- Kosov, A.A. and Semenov, E.I., Exact solutions of the generalized Richards equation with power-law nonlinearities, Differ. Equat., 2020, vol. 56, no. 9, pp. 1119–1129.
- Aksenov, A.V. and Polyanin, A.D., Review of methods for constructing exact solutions of equations of mathematical physics based on simpler solutions, Theor. Math. Phys., 2022, vol. 211, no. 2, pp. 567–594.
Supplementary files
