


Том 214, № 12 (2023)
Сходимость песочной кучи на треугольной решетке при ремасштабировании
Аннотация
Мы даем обзор результатов о сходимости в песочных моделях. Мы доказываем для песочной модели на треугольной решетке результаты, аналогичные уже существующим для квадратной решетки. А именно: рассмотрим песочную модель на целых точках плоскости, положим $n$ песчинок в начало координат. Запустим процесс релаксации: если в некоторой вершине $z$ число песчинок не меньше ее степени (в этом случае говорим, что вершина $z$ нестабильна), перемещаем из $z$ в каждого из соседей $z$ по одной песчинке; повторяем эту операцию, пока есть нестабильные вершины. Мы доказываем, что носитель состояния $(n\delta_0)^\circ$, на котором процесс стабилизируется, растет со скоростью $\sqrt n$, и после ремасштабирования в $\sqrt n$ раз у $(n\delta_0)^\circ$ есть предел в $^*$-слабой топологии.Такой результат уже был показан У. Пежденом и Ч. К. Смартом для квадратной решетки (каждую вершину соединяем с четырьмя ближайшими соседями), мы распространяем его на треугольную (каждая вершина соединяется с шестью соседями) решетку.Библиография: 39 названий.



Оценки интегралов производных $n$-листных функций и геометрические свойства областей
Аннотация
В работе исследован ряд вопросов о поведении двойных интегралов от модулей производных ограниченных $n$-листных функций и, в частности, рациональных функций фиксированной степени $n$. Для областей со спрямляемыми границами найден точный порядок роста таких интегральных средних в зависимости от $n$. Получены верхние оценки для областей с фрактальными границами, зависящие от размерности Минковского границы области, показано, что в некоторых случаях они близки к точным. Найдены также нижние оценки в терминах спектра интегральных средних конформных отображений. Полученные неравенства усиливают классические результаты Е. П. Долженко (1966 г.), а также недавние результаты авторов. Библиография: 32 наименования.



Пространства орбит $G_{n,2}/T^n$ и факторы Чжоу $G_{n,2}//(\mathbb{C}^{\ast})^n$ многообразий Грассмана $G_{n,2}$
Аннотация
Комплексные многообразия Грассмана $G_{n,k}$ являются фундаментальными объектами в развитии взаимосвязей алгебраической геометрии и алгебраической топологии. Случай $k=2$ выделяется особо, так как многообразия $G_{n,2}$ обладают несколькими замечательными свойствами, отличающими их от многообразий с $k>2$. Эта статья посвящена результатам, существенно использующим специфику многообразий $G_{n,2}$. Они относятся к известным задачам о каноническом действии алгебраического тора $(\mathbb{C}^{\ast})^n$ на $G_{n,2}$ и индуцированном действии компактного тора $T^n\subset(\mathbb{C}^{\ast})^n$. М. Капранов доказал, что компактификацию Делиня–Мамфорда–Гротендика–Кнудсена $\overline{\mathcal{M}}(0,n)$ пространства рациональных стабильных кривых с $n$ пронумерованными отмеченными точками можно отождествить с фактором Чжоу $G_{n,2}//(\mathbb{C}^{\ast})^n$. В наших недавних работах было дано конструктивное описание пространства орбит $G_{n,2}/T^n$. В этом результате важную роль играют понятия комплекса допустимых многогранников $P_\sigma$, пространств параметров $F_\sigma$ и универсального пространства $\mathcal{F}_n$ параметров $T^n$-действия на $G_{n,2}$. В настоящей статье получена явная конструкция пространства $\mathcal{F}_n$ методом замечательной компактификации. На основе этой конструкции и описания пространства $\overline{\mathcal{M}}(0,n)$ из работы Киля мы получили явный диффеоморфизм между $\mathcal{F}_n$ и $\overline{\mathcal{M}}(0,n)$. Таким образом, получена реализация фактора Чжоу $G_{n,2}//(\mathbb{C}^{\ast})^n$ в виде пространства $\mathcal{F}_n$ со структурой, в описании которой участвуют допустимые многогранники $P_\sigma$ и пространства $F_\sigma$. Библиография: 32 названия.



О спектре гамильтониана Ландау, возмущенного периодическим электрическим потенциалом
Аннотация
Исследуется спектр гамильтониана Ландау, возмущенного периодическим электрическим потенциалом $V\in L^2_{\mathrm{loc}}(\mathbb R^2;\mathbb R)$, если для потока однородного магнитного поля $B>0$ через элементарную ячейку $K$ решетки периодов потенциала $V$ выполняется условие $(2\pi)^{-1}Bv(K)=Q^{-1}$, $Q\in \mathbb N $, где $v(K)$ – площадь элементарной ячейки $K$. Для произвольных периодических потенциалов $V\in L^2_{\mathrm {loc}}(\mathbb R^2;\mathbb R)$ с нулевым средним значением $V_0=0$ доказано отсутствие в спектре собственных значений, не совпадающих с уровнями Ландау. Также для периодических потенциалов $V\in L^2_{\mathrm{loc}}(\mathbb R^2;\mathbb R)\setminus C^{\infty}(\mathbb R^2;\mathbb R)$ доказана абсолютная непрерывность спектра. Библиография: 23 названия.



Бесконечные эллиптические гипергеометрические ряды: сходимость и разностные уравнения
Аннотация
В статье выводятся конечноразностные уравнения бесконечного порядка для тета-гипергеометрических рядов и исследуется пространство их решений. В общем случае такие ряды расходятся, нами описаны ограничения на параметры, при которых они сходятся. В частности, нами обобщен критерий Харди и Литтлвуда о сходимости $q$-гипергеометрических рядов при $|q|=1$, $q^n\neq 1$, на эллиптический уровень и доказана сходимость бесконечных $ _{r+1}V_r$ совершенно уравновешенных эллиптических гипергеометрических рядов для ограниченных значений $q$. Библиография: 13 названий.



Двойственные исключительные наборы на лагранжевых грассманианах
Аннотация
Мы строим градуированные левые двойственные исключительные наборы к исключительным наборам, порождающим блоки Кузнецова и Полищука на лагранжевых грассманианах. В качестве приложения мы строим явные резольвенты для некоторых естественных неприводимых эквивариантных векторных расслоений. Библиография: 13 названий.


