Infinite elliptic hypergeometric series: convergence and diffrence equations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We derive finite difference equations of infinite order for theta-hypergeometric series and investigate the space of their solutions. In general, such infinite series diverge, and we describe some constraints on the parameters when they do converge. In particular, we lift the Hardy-Littlewood criterion of the convergence of q-hypergeometric series for |q|=1qn1, to the elliptic level and prove the convergence of infinite very-well poised elliptic hypergeometric r+1Vr-series for restricted values of q.

Sobre autores

Danil Krotkov

HSE University

Email: math-net2025_06@mi-ras.ru

Vyacheslav Spiridonov

Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics; HSE University

Autor responsável pela correspondência
Email: math-net2025_06@mi-ras.ru

Doctor of physico-mathematical sciences, no status

Bibliografia

  1. Р. Аски, Р. Рой, Дж. Эндрюс, Специальные функции, МЦНМО, М., 2013, 651 с.
  2. I. B. Frenkel, V. G. Turaev, “Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions”, The Arnold–Gelfand mathematical seminars, Birkhäuser Boston, Inc., Boston, MA, 1997, 171–204
  3. Дж. Гаспер, М. Рахман, Базисные гипергеометрические ряды, Мир, М., 1993, 349 с.
  4. S. Grepstad, L. Kaltenböck, M. Neumüller, “A positive lower bound for $lim inf_{Ntoinfty}prod_{r=1}^{N} |2sin pi rvarphi|$”, Proc. Amer. Math. Soc., 147:11 (2019), 4863–4876
  5. G. H. Hardy, J. E. Littlewood, “Notes on the theory of series (XXIV): a curious power-series”, Proc. Cambridge Philos. Soc., 42:2 (1946), 85–90
  6. D. S. Lubinsky, “The size of $(q; q)_n$ for $q$ on the unit circle”, J. Number Theory, 76:2 (1999), 217–247
  7. G. Petruska, “On the radius of convergence of $q$-series”, Indag. Math. (N.S.), 3:3 (1992), 353–364
  8. V. P. Spiridonov, “Theta hypergeometric series”, Asymptotic combinatorics with application to mathematical physics (St. Petersburg, 2001), NATO Sci. Ser. II Math. Phys. Chem., 77, Kluwer Acad. Publ., Dordrecht, 2002, 307–327
  9. V. P. Spiridonov, “An elliptic incarnation of the Bailey chain”, Int. Math. Res. Not. IMRN, 2002:37 (2002), 1945–1977
  10. V. P. Spiridonov, “Theta hypergeometric integrals”, Алгебра и анализ, 15:6 (2003), 161–215
  11. В. П. Спиридонов, “Очерки теории эллиптических гипергеометрических функций”, УМН, 63:3(381) (2008), 3–72
  12. A. Zhedanov, “Elliptic polynomials orthogonal on the unit circle with a dense point spectrum”, Ramanujan J., 19:3 (2009), 351–384
  13. A. Zhedanov, “Umbral “classical” polynomials”, J. Math. Anal. Appl., 420:2 (2014), 1354–1375

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Кротков Д.I., Спиридонов В.P., 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).