Пространства орбит $G_{n,2}/T^n$ и факторы Чжоу $G_{n,2}//(\mathbb{C}^{\ast})^n$ многообразий Грассмана $G_{n,2}$
- Авторы: Бухштабер В.М.1,2, Терзич С.3
-
Учреждения:
- Математический институт им. В.А. Стеклова Российской академии наук
- Национальный исследовательский университет "Высшая школа экономики"
- Университет Черногории
- Выпуск: Том 214, № 12 (2023)
- Страницы: 46-75
- Раздел: Статьи
- URL: https://ogarev-online.ru/0368-8666/article/view/147928
- DOI: https://doi.org/10.4213/sm9964
- ID: 147928
Цитировать
Аннотация
Комплексные многообразия Грассмана $G_{n,k}$ являются фундаментальными объектами в развитии взаимосвязей алгебраической геометрии и алгебраической топологии. Случай $k=2$ выделяется особо, так как многообразия $G_{n,2}$ обладают несколькими замечательными свойствами, отличающими их от многообразий с $k>2$. Эта статья посвящена результатам, существенно использующим специфику многообразий $G_{n,2}$. Они относятся к известным задачам о каноническом действии алгебраического тора $(\mathbb{C}^{\ast})^n$ на $G_{n,2}$ и индуцированном действии компактного тора $T^n\subset(\mathbb{C}^{\ast})^n$. М. Капранов доказал, что компактификацию Делиня–Мамфорда–Гротендика–Кнудсена $\overline{\mathcal{M}}(0,n)$ пространства рациональных стабильных кривых с $n$ пронумерованными отмеченными точками можно отождествить с фактором Чжоу $G_{n,2}//(\mathbb{C}^{\ast})^n$. В наших недавних работах было дано конструктивное описание пространства орбит $G_{n,2}/T^n$. В этом результате важную роль играют понятия комплекса допустимых многогранников $P_\sigma$, пространств параметров $F_\sigma$ и универсального пространства $\mathcal{F}_n$ параметров $T^n$-действия на $G_{n,2}$. В настоящей статье получена явная конструкция пространства $\mathcal{F}_n$ методом замечательной компактификации. На основе этой конструкции и описания пространства $\overline{\mathcal{M}}(0,n)$ из работы Киля мы получили явный диффеоморфизм между $\mathcal{F}_n$ и $\overline{\mathcal{M}}(0,n)$. Таким образом, получена реализация фактора Чжоу $G_{n,2}//(\mathbb{C}^{\ast})^n$ в виде пространства $\mathcal{F}_n$ со структурой, в описании которой участвуют допустимые многогранники $P_\sigma$ и пространства $F_\sigma$. Библиография: 32 названия.
Об авторах
Виктор Матвеевич Бухштабер
Математический институт им. В.А. Стеклова Российской академии наук; Национальный исследовательский университет "Высшая школа экономики"
Автор, ответственный за переписку.
Email: buchstab@mi-ras.ru
доктор физико-математических наук, профессор
Светлана Терзич
Университет Черногории
Email: sterzic@rc.pmf.cg.ac.yu
кандидат физико-математических наук
Список литературы
- V. M. Buchstaber, S. Terzic, “Topology and geometry of the canonical action of $T^4$ on the complex Grassmannian $G_{4,2}$ and the complex projective space $mathbb CP^5$”, Mosc. Math. J., 16:2 (2016), 237–273
- V. M. Buchstaber, S. Terzic, “Toric topology of the complex Grassmann manifolds”, Mosc. Math. J., 19:3 (2019), 397–463
- В. М. Бухштабер, С. Терзич, “Основания $(2n, k)$-многообразий”, Матем. сб., 210:4 (2019), 41–86
- V. M. Buchstaber, A. P. Veselov, Chern–Dold character in complex cobordisms and theta divisors
- В. М. Бухштабер, С. Терзич, “Разрешение особенностей пространств орбит $G_{n,2}/T^n$”, Труды МИАН, 317, Торическая топология действия групп, геометрия и комбинаторика, Ч. 1 (2022), 27–63
- T. Coates, A. Givental, “Quantum cobordisms and formal group laws”, The unity of mathematics, Progr. Math., 244, Birkhäuser Boston, Inc., Boston, MA, 2006, 155–171
- C. De Concini, C. Procesi, “Complete symmetric varieties”, Invariant theory (Montecatini, 1982), Lecture Notes in Math., 996, Springer-Verlag, Berlin, 1983, 1–44
- C. De Concini, C. Procesi, “Wonderful models of subspace arrangements”, Selecta Math. (N.S.), 1:3 (1995), 459–494
- C. De Concini, C. Procesi, “Hyperplane arrangements and holonomy equations”, Selecta Math. (N.S.), 1:3 (1995), 495–535
- C. De Concini, G. Gaiffi, “Projective wonderful models for toric arrangements”, Adv. Math., 327 (2018), 390–409
- C. De Concini, G. Gaiffi, “Cohomology rings of compactifications of toric arrangements”, Algebr. Geom. Topol., 19:1 (2019), 503–532
- C. De Concini, G. Gaiffi, O. Papini, “On projective wonderful models for toric arrangements and their cohomology”, Eur. J. Math., 6:3 (2020), 790–816
- W. Fulton, R. MacPherson, “A compactification of configuration space”, Ann. of Math. (2), 139:1 (1994), 183–225
- I. M. Gelfand, R. D. MacPherson, “Geometry in Grassmannians and a generalization of the dilogarithm”, Adv. Math., 44:3 (1982), 279–312
- И. М. Гельфанд, В. В. Серганова, “Комбинаторные геометрии и страты тора на однородных компактных многообразиях”, УМН, 42:2(254) (1987), 107–134
- I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., 1994, x+523 pp.
- M. Goresky, R. MacPherson, “On the topology of algebraic torus actions”, Algebraic groups (Utrecht, 1986), Lecture Notes in Math., 1271, Springer-Verlag, Berlin, 1987, 73–90
- Yi Hu, “Topological aspects of Chow quotients”, J. Differential Geom., 69:3 (2005), 399–440
- M. M. Kapranov, “Chow quotients of Grassmannians. I”, I. M. Gel'fand seminar, Adv. Soviet Math., 16, Part 2, Amer. Math. Soc., Providence, RI, 1993, 29–110
- M. M. Kapranov, “Veronese curves and Grothendieck–Knudsen moduli space $overline{M}_(0,n)$”, J. Alebraic Geom., 2:2 (1993), 239–262
- М. Э. Казарян, С. К. Ландо, В. В. Прасолов, Алгебраические кривые. По направлению к пространствам модулей, МЦНМО, М., 2019, 272 с.
- S. Keel, “Intersection theory of moduli space of stable $N$-pointed curves of genus zero”, Trans. Amer. Math. Soc., 330:2 (1992), 545–574
- S. Keel, J. Tevelev, “Geometry of Chow quotients of Grassmannians”, Duke Math. J., 134:2 (2006), 259–311
- S. Keel, J. McKernan, “Contractible extremal rays on $overline{M}_(0,n)$”, Handbook of moduli, v. 2, Adv. Lect. Math. (ALM), 25, Int. Press, Somerville, MA; Higher Education Press, Beijing, 2013, 115–130
- N. Klemyatin, Universal spaces of parameters for complex Grassmann manifolds $G_{q+1,2}$
- J. M. Landsberg, L. Manivel, “The projective geometry of Freudenthal's magic square”, J. Agebra, 239:2 (2001), 477–512
- Li Li, “Wonderful compactification of an arrangement of subvarieties”, Michigan Math. J., 58:2 (2009), 535–563
- D. Luna, Th. Vust, “Plongements d'espaces homogènes”, Comment. Math. Helv., 58:2 (1983), 186–245
- D. McDuff, D. Salamon, $J$-holomorphic curves and symplectic topology, Amer. Math. Soc. Colloq. Publ., 52, Amer. Math. Soc., Providence, RI, 2004, xii+669 pp.
- H. Süss, “Toric topology of the Grassmannian of planes in $mathbb{C}^{5}$ and the del Pezzo surface of degree $5$”, Mosc. Math. J., 21:3 (2021), 639–652
- D. A. Timashev, Homogeneous spaces and equivariant embeddings, Encyclopaedia Math. Sci., 138, Invariant Theory Algebr. Transform. Groups, 8, Springer, Heidelberg, 2011, xxii+253 pp.
- Ф. Л. Зак, “Многообразия Севери”, Матем. сб., 126(168):1 (1985), 115–132
Дополнительные файлы
