On the fixed volume discrepancy of the Korobov point sets

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This paper is devoted to the study of a discrepancy-type characteristic – the fixed volume discrepancy – of Korobov point sets in the unit cube. It has been observed recently that this new characteristic allows us to obtain an optimal rate of dispersion decay. This observation has motivated us to study this new version of discrepancy thoroughly; it also seems to have independent interest. This paper extends recent results due to Temlyakov and Ullrich on the fixed volume discrepancy of Fibonacci point sets. Bibliography: 23 titles.

About the authors

Anastasiya Sergeevna Rubtsova

Laboratory "Multidimensional Approximation and Applications", Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics

Konstantin Sergeevich Ryutin

Laboratory "Multidimensional Approximation and Applications", Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics

Email: kriutin@yahoo.com
Candidate of physico-mathematical sciences

Vladimir Nikolaevich Temlyakov

University of South Carolina; Steklov Mathematical Institute of Russian Academy of Sciences; Laboratory "Multidimensional Approximation and Applications", Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics

Email: temlyak@math.sc.edu
Doctor of physico-mathematical sciences, Professor

References

  1. V. N. Temlyakov, M. Ullrich, “On the fixed volume discrepancy of the Fibonacci sets in the integral norms”, J. Complexity, 61 (2020), 101472, 8 pp.
  2. J. Beck, W. W. L. Chen, Irregularities of distribution, Cambridge Tracts in Math., 89, Cambridge Univ. Press, Cambridge, 1987, xiv+294 pp.
  3. J. Matoušek, Geometric discrepancy. An illustrated guide, Algorithms Combin., 18, Springer-Verlag, Berlin, 1999, xii+288 pp.
  4. E. Novak, H. Wozniakowski, Tractability of multivariate problems, v. II, EMS Tracts Math., 12, Standard information for functionals, Eur. Math. Soc., Zürich, 2010, xviii+657 pp.
  5. V. Temlyakov, Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018, xvi+534 pp.
  6. D. Bilyk, “Roth's orthogonal function method in discrepancy theory and some new connections”, A panorama of discrepancy theory, Lecture Notes in Math., 2107, Springer, Cham, 2014, 71–158
  7. Dinh Dũng, V. Temlyakov, T. Ullrich, Hyperbolic cross approximation, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Cham, 2018, xi+218 pp.
  8. V. N. Temlyakov, “Cubature formulas, discrepancy, and nonlinear approximation”, J. Complexity, 19:3 (2003), 352–391
  9. V. Temlyakov, “Connections between numerical integration, discrepancy, dispersion, and universal discretization”, SMAI J. Comput. Math., S5 (2019), 185–209
  10. V. N. Temlyakov, “Smooth fixed volume discrepancy, dispersion, and related problems”, J. Approx. Theory, 237 (2019), 113–134
  11. C. Aistleitner, A. Hinrichs, D. Rudolf, “On the size of the largest empty box amidst a point set”, Discrete Appl. Math., 230 (2017), 146–150
  12. S. Breneis, A. Hinrichs, Fibonacci lattices have minimal dispersion on the two-dimensional torus
  13. A. Dumitrescu, Minghui Jiang, “On the largest empty axis-parallel box amidst $n$ points”, Algorithmica, 66:2 (2013), 225–248
  14. G. Rote, R. F. Tichy, “Quasi-Monte-Carlo methods and the dispersion of point sequences”, Math. Comput. Modelling, 23:8-9 (1996), 9–23
  15. D. Rudolf, “An upper bound of the minimal dispersion via delta covers”, Contemporary computational mathematics – a celebration of the 80th birthday of Ian Sloan, Springer, Cham, 2018, 1099–1108
  16. J. Sosnovec, “A note on minimal dispersion of point sets in the unit cube”, European J. Combin., 69 (2018), 255–259
  17. M. Ullrich, “A lower bound for the dispersion on the torus”, Math. Comput. Simulation, 143 (2018), 186–190
  18. M. Ullrich, “A note on the dispersion of admissible lattices”, Discrete Appl. Math., 257 (2019), 385–387
  19. M. Ullrich, J. Vybiral, “An upper bound on the minimal dispersion”, J. Complexity, 45 (2018), 120–126
  20. V. N. Temlyakov, Approximation of periodic functions, Comput. Math. Anal. Ser., Nova Sci. Publ., Commack, NY, 1993, x+419 pp.
  21. V. N. Temlyakov, “Fixed volume discrepancy in the periodic case”, Topics in classical and modern analysis (Savannah, GA, 2017), Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Cham, 2019, 315–330
  22. H. Niederreiter, Chaoping Xing, “Low-discrepancy sequences and global function fields with many rational places”, Finite Fields Appl., 2:3 (1996), 241–273
  23. В. А. Быковский, “Отклонение сеток Коробова”, Изв. РАН. Сер. матем., 76:3 (2012), 19–38

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Rubtsova A.S., Ryutin K.S., Temlyakov V.N.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).