POLYNOMIAL RELATIONS FOR BOUNDS ON THE EXPONENTS IN SOLUTIONS TO OPERATOR EQUATIONS

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A general approach to finding the indicial polynomials for differential, difference, and q-difference operators is discussed. The structure of such a polynomial corresponding to the product of operators is considered.

Sobre autores

S. Abramov

Federal Research Center “Computer Science and Control” of Russian Academy of Sciences

Email: sergeyabramov@mail.ru
Moscow, Russia

A. Ryabenko

Federal Research Center “Computer Science and Control” of Russian Academy of Sciences

Email: anna.ryabenko@gmail.com
Moscow, Russia

Bibliografia

  1. Abramov S.A. On the multiplicative property of indicial polynomials // Comput. Math. Math. Phys. (in press)
  2. Coddington E.A., Levinson N. Theory of Ordinary Differential Equations. New York: McGraw-Hill, 1955
  3. Davenport J., Siret Y., Tournier E. Calcul formel. Paris: Masson, 1987
  4. Abramov S.A. Problems of computer algebra involved in the search for polynomial solutions of linear differential and difference equations // Moscow Univ. Comput. Math. and Cybernet, 1989, no. 3, pp. 63–68
  5. Petkovsek M. Finding closed-form solutions of difference equations by symbolic methods. Ph.D. Dissertation. Carnegie Mellon University, USA. Order Number: UMI Order No. GAX91-33361. 1991.
  6. Abramov S.A. Elements of Computer Algebra and Linear Ordinary Differential, Difference, and Difference Operators, Moscow: Mosk. Tsentr Nepreryvnogo Mat. Obrazovaniya, 2012 [in Russian].
  7. Abramov S., Bronstein M., Petkovsek M. On polynomial solutions of linear operator equations // ISSAC’95 Proceedings. 1995. P. 290–295.
  8. Abramov S., Petkovsek M., Ryabenko A. Special formal series solutions of linear operator equations // Discrete Math. 2000. V. 210. P. 3–25.
  9. Khmelnov D.E. Basis selection in solving linear functional equations // Program. Comput. Software, 2002, vol. 28, no. 2. pp. 102–105.
  10. Khmelnov D.E. Search for polynomial solutions of linear functional systems by means of induced recurrences // Program. Comput. Software, 2004, vol. 30, no. 2, pp. 61–67.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).